8£®ÔÚ¡÷ABCÖУ¬DÊÇBCµÄÖе㣬|$\overrightarrow{AD}$|=3£¬µãPÔÚADÉÏ£¬ÇÒÂú×ã$\overrightarrow{AP}$=$\frac{1}{2}$$\overrightarrow{PD}$£¬Ôò$\overrightarrow{PA}$•£¨$\overrightarrow{PB}$+$\overrightarrow{PC}$£©=£¨¡¡¡¡£©
A£®4B£®2C£®-2D£®-4

·ÖÎö ÓÉÌâÒâ¿ÉµÃ|$\overrightarrow{PA}$|=$\frac{1}{3}$|$\overrightarrow{AD}$|=1£¬|$\overrightarrow{PD}$|=2£¬ÔÙÓÉÖеãµÄÏòÁ¿±íʾ£¬¿ÉµÃ$\overrightarrow{PA}$•£¨$\overrightarrow{PB}$+$\overrightarrow{PC}$£©=2$\overrightarrow{PA}$•$\overrightarrow{PD}$£¬ÔËÓÃÏòÁ¿µÄÊýÁ¿»ýµÄ¶¨Ò壬¼ÆËã¼´¿ÉµÃµ½ËùÇóÖµ£®

½â´ð ½â£ºÓÉ|$\overrightarrow{AD}$|=3£¬µãPÔÚADÉÏ£¬ÇÒÂú×ã$\overrightarrow{AP}$=$\frac{1}{2}$$\overrightarrow{PD}$£¬
¿ÉµÃ|$\overrightarrow{PA}$|=$\frac{1}{3}$|$\overrightarrow{AD}$|=1£¬|$\overrightarrow{PD}$|=2£¬
ÓÉDÊÇBCµÄÖе㣬¿ÉµÃ2$\overrightarrow{PD}$=$\overrightarrow{PB}$+$\overrightarrow{PC}$£¬
¼´ÓÐ$\overrightarrow{PA}$•£¨$\overrightarrow{PB}$+$\overrightarrow{PC}$£©=2$\overrightarrow{PA}$•$\overrightarrow{PD}$
=-2|$\overrightarrow{PA}$|•|$\overrightarrow{PD}$|=-2¡Á1¡Á2=-4£®
¹ÊÑ¡D£®

µãÆÀ ±¾Ì⿼²éÏòÁ¿µÄÊýÁ¿»ýµÄ¶¨Ò壬¿¼²éÖеãµÄÏòÁ¿±íʾÐÎʽ£¬¿¼²éÔËËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

18£®Ôڱ߳¤Îª1µÄÕý·½ÐÎABCDÖÐÈÎȡһµãP£¬Ôò¡÷ABPµÄÃæ»ý´óÓÚ$\frac{1}{4}$µÄ¸ÅÂÊÊÇ$\frac{1}{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®Èçͼ£¬ÔÚËıßÐÎABCDÖУ¬$\overrightarrow{AB}$=$\overrightarrow{DC}$£¬N¡¢M·ÖÊÇAD¡¢BCÉϵĵ㣬ÇÒ$\overrightarrow{CN}$=$\overrightarrow{MA}$£¬ÇóÖ¤£º$\overrightarrow{DN}$=$\overrightarrow{MB}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

16£®Èô²»µÈʽx2-2mx+m2-1£¼0³ÉÁ¢µÄ±ØÒª²»³ä·ÖÌõ¼þÊÇ$\frac{1}{3}$£¼x£¼$\frac{7}{2}$£¬ÔòʵÊýmµÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
A£®£¨-¡Þ£¬$\frac{4}{3}$]¡È[$\frac{5}{2}$£¬+¡Þ£©B£®£¨-¡Þ£¬$\frac{4}{3}$]¡È£¨$\frac{5}{2}$£¬+¡Þ£©C£®[$\frac{4}{3}$£¬$\frac{5}{2}$]D£®[$\frac{4}{3}$£¬$\frac{5}{2}$£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

3£®É躯Êýf£¨x£©=$\left\{\begin{array}{l}{{x}^{3}£¬}&{x¡Ýa}\\{-{x}^{2}£¬}&{x£¼a}\end{array}\right.$£¬a¡ÊR£¬Èô´æÔÚʵÊýb£¬Ê¹º¯Êýg£¨x£©=f£¨x£©-bÓÐÁ½¸öÁãµã£¬ÔòʵÊýaµÄȡֵ·¶Î§Îª£¨-¡Þ£¬-1£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

13£®ÒÑÖªº¯Êýf£¨x£©=|x2+3x|£¬x¡ÊR£¬Èô·½³Ìf£¨x£©-a|x-1|=0Ç¡ÓÐ4¸ö»¥ÒìµÄʵÊý¸ù£¬ÔòʵÊýaµÄȡֵ·¶Î§Îª£¨0£¬1£©¡È£¨9£¬+¡Þ£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

20£®ÒÑÖªÊýÁÐ{an}ΪµÈ²îÊýÁУ¬ÇÒa5+a7+a9+a11+a13=80£¬Ôòa14+a16-a21=£¨¡¡¡¡£©
A£®12B£®15C£®16D£®18

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®ÇóÏÂÁк¯Êý¶¨ÒåÓò£®
£¨1£©y=tan$\frac{x}{2}$      
£¨2£©y=$\frac{1}{1-tanx}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

7£®ÔÚÈýÀâ×¶C-ABDÖУ¬¡÷ABDÓë¡÷CBDÊÇÈ«µÈµÄµÈÑüÖ±½ÇÈý½ÇÐΣ¬OΪб±ßBDµÄÖе㣬AB=4£¬¶þÃæ½ÇA-BD-CµÄ´óСΪ$\frac{¦Ð}{6}$²¢¸ø³öÏÂÃæ½áÂÛ£º
£¨1£©AC¡ÍBD£»  £¨2£©AD¡ÍCO£»  £¨3£©¡÷AOCΪÕýÈý½ÇÐΣ» £¨4£©cos¡ÏADC=$\frac{3}{4}$£»
£¨5£©ËÄÃæÌåABCDµÄÍâ½ÓÇò±íÃæ»ýΪ32¦Ð£¬
ÆäÖÐÕæÃüÌâ¸öÊýÊÇ£¨1£©£¨5£©£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸