分析 由两角和与差的余弦函数公式化简已知可得cosB=$\frac{1}{2}$,利用余弦定理求得b,进而根据正弦定理求得sinC的表达式,根据a范围即可确定sinC的范围.
解答 解:∵sinA-sinC=sin(A-B).
∴sinA=sin(A-B)+sinC=sin(A-B)+sin(A+B)=2sinAcosB,
∴由sinA≠0,可得:cosB=$\frac{1}{2}$,
∵c=6,
∴由余弦定理可得:b2=a2+c2-2accosB=a2-6a+36,
∴b=$\sqrt{{a}^{2}-6a+36}$,
于是由正弦定理可得sinC=$\frac{csinB}{b}$=$\frac{6×\frac{\sqrt{3}}{2}}{\sqrt{{a}^{2}-6a+36}}$=$\frac{3\sqrt{3}}{\sqrt{(a-3)^{2}+27}}$,
∵1≤a≤6,$\sqrt{(a-3)^{2}+27}$∈[3$\sqrt{3}$,6],
从而得到sinC的取值范围是:[$\frac{\sqrt{3}}{2}$,1].
故答案为:[$\frac{\sqrt{3}}{2}$,1].
点评 本题主要考查了两角和与差的余弦函数公式,考查了余弦定理和正弦定理的综合应用,属于基本知识的考查.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{6}$ | B. | $\frac{1}{4}$ | C. | $\frac{3}{8}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $[\frac{{2\sqrt{3}}}{3},+∞)$ | B. | $[\frac{{\sqrt{3}}}{3},+∞)$ | C. | $(0,\frac{{2\sqrt{3}}}{3}]$ | D. | $(0,\frac{4}{3})$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com