精英家教网 > 高中数学 > 题目详情
13.下列命题正确的是(  )
A.若直线l上有无数个点不在平面α内,则l∥α
B.若直线l与平面α有两个公共点,则直线l在平面内
C.若直线l与平面α相交,则l与平面α内的任意直线都是异面直线
D.若直线l上有两个点到平面α的距离相等,则l∥α

分析 根据空间直线与平面的位置关系的定义,分类,及几何特征,逐一分析四个答案的真假,可得答案.

解答 解:若直线l上有无数个点不在平面α内,则l∥α或l与α相交,故A错误;
由公理1可得:若直线l与平面α有两个公共点,则直线l在平面内,故B正确;
若直线l与平面α相交,则l与平面α内的任意直线相交(过交点)或异面(不过交点),故C错误;
直线l上有两个点到平面α的距离相等,则l与α可能平行,可能相交,也可能线在面内,故D错误;
故选:B

点评 本题以命题的真假判断与应用为载体,考查了空间线面关系,熟练掌握空间线面关系的定义及几何特征,是解答的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.如果a>0,b>0,试证明lg$\frac{a+b}{2}$≥$\frac{lga+lgb}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.假设关于某设备的使用年限x和所支出的维修费用y(万元)有如下的统计资料:
使用年限x23456
维修费用y2.23.85.56.57.0
若由资料知y对x成线性相关关系、试求:
(1)线性回归方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$的回归系数$\stackrel{∧}{b}$与$\stackrel{∧}{a}$
(2)估计使用年限为10年时,维修费用是多少?(参考公式:$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在平面直角坐标系中,曲线C1的参数方程为$\left\{\begin{array}{l}{x=acosφ}\\{y=bsinφ}\end{array}\right.$(a>b>0,φ为参数),以Ο为极点,x轴的正半轴为极轴建立极坐标系,曲线C2是圆心在极轴上且经过极点的圆,已知曲线C1上的点M(2,$\sqrt{3}$)对应的参数φ=$\frac{π}{3}$.θ=$\frac{π}{4}$与曲线C2交于点D($\sqrt{2}$,$\frac{π}{4}$).
(1)求曲线C1,C2的直角坐标方程;
(2)A(ρ1,θ),B(ρ2,θ+$\frac{π}{2}$)是曲线C1上的两点,求$\frac{1}{{ρ}_{1}^{2}}$+$\frac{1}{{ρ}_{2}^{2}}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在平面直角坐标系xOy中,曲线C的参数方程为$\left\{\begin{array}{l}{x=2-3sinθ}\\{y=3cosθ-2}\end{array}\right.$(θ为参数),在极坐标系(以原点O为极点,以x轴非负半轴为极轴)中,直线l的方程为$\sqrt{2}$ρcosθ+$\sqrt{2}$ρsinθ=2a.
(1)求曲线C的普通方程;
(2)若直线l与动点A的轨迹有且仅有一个公共点,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在正四棱柱ABCD-A1B1C1D1中,AB=1,AA1=2.
(1)求BC1与平面ABCD所成角的余弦值;
(2)证明:AC1⊥BD;
(3)求AC1与平面ABCD所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设i是虚数单位,若$\frac{z}{2-i}$=1+i,则复数z=(  )
A.2+iB.1+iC.3+iD.3=i

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知an=3n,bn=3n,n∈N*,对于每一个k∈N*,在ak与ak+1之间插入bk个3得到一个数列{cn}.设Tn是数列{cn}的前n项和,则所有满足Tm=3cm+1的正整数m的值为3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=ax2+2x-lnx(a∈R).
(Ⅰ)若a=4,求函数f(x)的极值;
(Ⅱ)若f′(x)在区间(0,1)内有唯一的零点x0,求a的取值范围.

查看答案和解析>>

同步练习册答案