分析 解法一:(Ⅰ)当a=4时,化简函数的解析式,求出定义域,函数的导数,求出极值点,利用导函数的符号判断函数的单调性,求解极值即可.
(Ⅱ)利用$f'(x)=2ax+2-\frac{1}{x}=\frac{{2a{x^2}+2x-1}}{x}$,通过导函数为0,构造新函数,通过分类讨论求解即可.
解法二:(Ⅰ)同解法一;
(Ⅱ)令f'(x)=0,由2ax2+2x-1=0,得$a=\frac{1}{{2{x^2}}}-\frac{1}{x}$.设$m=\frac{1}{x}$,则m∈(1,+∞),$a=\frac{1}{2}{m^2}-m=\frac{1}{2}{(m-1)^2}-\frac{1}{2}$,问题转化为直线y=a与函数$h(m)=\frac{1}{2}{(m-1)^2}-\frac{1}{2}$的图象在(1,+∞)恰有一个交点问题,即可求a的取值范围.
解答 解:(Ⅰ)当a=4时,f(x)=4x2+2x-lnx,x∈(0,+∞),$f'(x)=8x+2-\frac{1}{x}=\frac{{8{x^2}+2x-1}}{x}=\frac{(4x-1)(2x+1)}{x}$.
由x∈(0,+∞),令f'(x)=0,得$x=\frac{1}{4}$.
当x变化时,f'(x),f(x)的变化如下表:
| x | $(0,\frac{1}{4})$ | $\frac{1}{4}$ | $(\frac{1}{4},+∞)$ |
| f'(x) | - | 0 | + |
| f(x) | ↘ | 极小值 | ↗ |
点评 本题考查函数与导数等基本知识,考查推理论证能力和运算求解能力,考查函数与方程的思想、化归与转化的思想、数形结合的思想,考查运用数学知识分析和解决问题的能力.
科目:高中数学 来源: 题型:选择题
| A. | 若直线l上有无数个点不在平面α内,则l∥α | |
| B. | 若直线l与平面α有两个公共点,则直线l在平面内 | |
| C. | 若直线l与平面α相交,则l与平面α内的任意直线都是异面直线 | |
| D. | 若直线l上有两个点到平面α的距离相等,则l∥α |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [0,3] | B. | (0,3) | C. | (-∞,0)∪(3,+∞) | D. | (-∞,0]∪[3,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | a≥1 | |
| B. | 关于x的方程x2-2x+a=0无实数根 | |
| C. | a>1 | |
| D. | 关于x的方程x2-2x+a=0有两个相等的实数根 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com