【题目】如图,三棱柱
中,
,
,平面
平面
,
与
相交于点
.
![]()
(1)求证:
平面
;
(2)求二面角
的余弦值.
【答案】(1)详见解析;(2)
.
【解析】
试题(1)可利用推论“若两平面垂直,一个平面上的直线垂直于两平面交线,则直线垂直于另一个平面”证明线面垂直。
(2)以
为原点,以
所在直线分别为
轴、
轴、
轴建立空间直角坐标系,利用空间向量即可求得二面角余弦值。
试题解析:
(1)证明:设
的中点为
,连
.
∵
,
∴四边形
为菱形,且
为正三角形,∴
.
∵
,∴
.
而
,
∴
平面
,∴
.
∵四边形
为菱形,则有
,
又平面
平面
,平面
平面
,
∴
平面
,
∴
,
又∵
,∴
平面
.
(2)
![]()
如图,∵
,∴
,
以
为原点,以
所在直线分别为
轴、
轴、
轴建立空间直角坐标系,
∵
,
∴
.
从而,有
,
.
∴
.
设面
的法向量为
,
则
,
又面
的法向量为
,
设二面角
的大小为
,由图知
为锐角,
则
.
科目:高中数学 来源: 题型:
【题目】某地棚户区改造建筑平面示意图如图所示,经规划调研确定,棚改规划建筑用地区域近似为圆面,该圆面的内接四边形
是原棚户区建筑用地,测量可知边界
万米,
万米,
万米.
(1)请计算原棚户区建筑用地
的面积及
的长;
(2)因地理条件的限制,边界
不能更改,而边界
可以调整,为了提高棚户区建筑用地的利用率,请在圆弧
上设计一点
,使得棚户区改造后的新建筑用地
的面积最大,并求出最大值.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆C:
.
(1)求圆的圆心C的坐标和半径长;
(2)直线l经过坐标原点且不与y轴重合,l与圆C相交于
两点,求证:
为定值;
(3)斜率为1的直线m与圆C相交于D、E两点,求直线m的方程,使
的面积最大.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某企业拟用10万元投资甲、乙两种商品.已知各投入
万元,甲、乙两种商品分别可获得
万元的利润,利润曲线
,
,如图所示.
![]()
(1)求函数
的解析式;
(2)应怎样分配投资资金,才能使投资获得的利润最大?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某蛋糕店每天做若干个生日蛋糕,每个制作成本为50元,当天以每个100元售出,若当天白天售不出,则当晚以30元/个价格作普通蛋糕低价售出,可以全部售完.
(1)若蛋糕店每天做20个生日蛋糕,求当天的利润
(单位:元)关于当天生日蛋糕的需求量
(单位:个,
)的函数关系;
(2)蛋糕店记录了100天生日蛋糕的日需求量(单位:个)整理得下表:
![]()
(ⅰ)假设蛋糕店在这100天内每天制作20个生日蛋糕,求这100天的日利润(单位:元)的平均数;
(ⅱ)若蛋糕店一天制作20个生日蛋糕,以100天记录的各需求量的频率作为概率,求当天利润不少于900元的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在如图所示的几何体中,四边形
是菱形,
是矩形,平面
平面
.
,
,
且点
为
的中点.
![]()
(1) 求证:![]()
平面
;
(2) 求
与平面
所成角的正弦值;
(3) 在线段
上是否存在点
,使二面角
的大小为
?若存在,求出
的长;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列
(
)的通项公式为
(
).
(1)分别求
的二项展开式中的二项式系数之和与系数之和;
(2)求
的二项展开式中的系数最大的项;
(3)记
(
),求集合
的元素个数(写出具体的表达式).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com