精英家教网 > 高中数学 > 题目详情
已知{an}为等差数列,且a1+a5=10,a4+a8=22.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若数列{an}的前n项和为Sn,等比数列{bn}满足b2=a5,b3=S9,求数列{bn}的前n项和Tn
考点:数列的求和,等差数列的性质
专题:等差数列与等比数列
分析:(Ⅰ)由已知条件利用等差数列的通项公式求出公差和首项,由此能求出an=2n-1.
(Ⅱ)由(Ⅰ)得b2=9,b3=81,由此能求出等比数列的首项和公比,由此能求出数列{bn}的前n项和Tn
解答: 解:(Ⅰ)设数列{an}的公差为d,
a4+a8-a1-a5=6d=12,得d=2,
代入a1+a5=10得a1=1,
∴an=2n-1.(6分)
(Ⅱ)由(Ⅰ)得a5=9,
Sn=
(a1+an)n
2
=n2
,∴S9=81,
∴b2=9,b3=81,
∴b1=1,q=9,
Tn=
1×(1-9n)
1-9
=
1
8
(9n-1)
.(12分)
点评:本题考查数列的通项公式和前n项和公式的求法,是中档题,解题时要注意等差数列和等比数列的性质的灵活运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=lnx+ex,g(x)=ex+
1
2
x2-ax(a∈R)(e=2.71828…是自然对数的底数)
(1)当a=
3
2
,设F(x)=f(x)-g(x),求F(x)的单调区间;
(2)定义:若函数φ(x)在定义域为[m,n](m<n)上的值域为[m,n],则称区间[m,n]为函数φ(x)的“同域区间”,在(1)的条件下,证明:函数F(x)在区间(0,2)内存在“同域区间”;
(3)当a>1时,对于区间(2,3)内任意两个不相等的实数x1,x2都有|f(x1)-f(x2)|>|g(x1)-g(x2)|成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

将形如
.
ab
cd
.
的符号称二阶行列式,现规定
.
ab
cd
.
=ad-bc,函数f(x)=
.
3sinωx
-
3
cosωx
.
在一个周期内的图象如图所示,A为图象的最高点,B、C为图象与x轴的交点,且△ABC为正三角形.
(1)求ω的值及函数f(x)的单调递增区间;
(2)若-2<f(x)-m<2,在x∈[0,2]上恒成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知P为椭圆
x2
4
+
y2
3
=1上一点,Q为直线
x=t
y=2t+6
上一点,求PQ最小值;
(2)在极坐标系,圆O:ρ=cosθ+sinθ,直线l:ρsin(θ-
π
4
)=
2
2
,θ∈(0,π),求直线l与圆O交点的极坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

计算:
(1)2-
1
2
+
(-4)0
2
+
1
2
-1
-
(1-
5
)0

(2)已知f(α)=
sin(α-
π
2
)cos(
2
-α)tan(7π-α)
tan(-α-5π)sin(α-3π)
.若tanα=2,求f(α)•f(
π
2
-α)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=(x+1)e-x(e为自然对数的底数).
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)设函数φ(x)=xf(x)+tf′(x)+e-x,存在x1,x2∈[0,1],使得成立2φ(x1)<φ(x2)成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知四个半径为R的大球,上层一个,下层三个且两两相切叠放在一起,若在他们围成的空隙中,有一个小球与这四个大球都外切,另有一个更大的球与这四个球都内切,求小球的半径r1和更大球的半径r2

查看答案和解析>>

科目:高中数学 来源: 题型:

用适当的方法表示下列集合.
(1)方程x(x2+2x+1)=0的解;
(2)不等式x-3>4的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=(1+sinx)(1+cosx)的最大值为
 

查看答案和解析>>

同步练习册答案