精英家教网 > 高中数学 > 题目详情
(2013•鹰潭一模)如图,已知三棱锥A-BPC中,AP⊥PC,AC⊥BC,M为AB的中点,D为PB的中点,且△PMB为正三角形.
(I)求证:BC⊥平面APC;
(Ⅱ)若BC=3,AB=1O,求点B到平面DCM的距离.
分析:(I)根据正三角形三线合一,可得MD⊥PB,利用三角形中位线定理及空间直线夹角的定义可得AP⊥PB,由线面垂直的判定定理可得AP⊥平面PBC,即AP⊥BC,再由AC⊥BC结合线面垂直的判定定理可得BC⊥平面APC;
(Ⅱ)记点B到平面MDC的距离为h,则有VM-BCD=VB-MDC.分别求出MD长,及△BCD和△MDC面积,利用等积法可得答案.
解答:证明:(Ⅰ)如图,
∵△PMB为正三角形,
且D为PB的中点,
∴MD⊥PB.
又∵M为AB的中点,D为PB的中点,
∴MD∥AP,
∴AP⊥PB.
又已知AP⊥PC,PB∩PC=P,PB,PC?平面PBC
∴AP⊥平面PBC,
∴AP⊥BC,
又∵AC⊥BC,AC∩AP=A,
∴BC⊥平面APC,…(6分)
解:(Ⅱ)记点B到平面MDC的距离为h,则有VM-BCD=VB-MDC
∵AB=10,
∴MB=PB=5,
又BC=3,BC⊥PC,
∴PC=4,
S△BDC=
1
2
S△PBC=
1
4
PC•BC=3

MD=
5
3
2

VM-BCD=
1
3
MD•S△BDC=
5
3
2

在△PBC中,CD=
1
2
PB=
5
2

又∵MD⊥DC,
S△MDC=
1
2
MD•DC=
25
8
3

VB-MDC=
1
3
h•S△MDC=
1
3
•h•
25
8
3
=
5
3
2

h=
12
5

即点B到平面DCM的距离为
12
5
.     …(12分)
点评:本题考查的知识点是直线与平面垂直的判定,点到平面的距离,其中(1)的关键是熟练掌握空间线线垂直与线面垂直之间的相互转化,(2)的关键是等积法的使用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•鹰潭一模)设l、m、n表示三条直线,α、β、r表示三个平面,则下面命题中不成立的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•鹰潭一模)A﹑B﹑C是直线l上的三点,向量
OA
OB
OC
满足:
OA
-[y+2f'(1)]•
OB
+ln(x+1)•
OC
=
0

(Ⅰ)求函数y=f(x)的表达式;          
(Ⅱ)若x>0,证明f(x)>
2x
x+2

(Ⅲ)当
1
2
x2≤f(x2)+m2-2bm-3
时,x∈[-1,1]及b∈[-1,1]都恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•鹰潭一模)定义域为R的偶函数f(x)满足对?x∈R,有f(x+2)=f(x)-f(1),且当x∈[2,3]时,f(x)=-2x2+12x-18,若函数y=f(x)-loga(|x|+1)在(0,+∞)上至多三个零点,则a的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•鹰潭一模)复数z=
2+i
1-i
-i(2-i)
在复平面对应的点在(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•鹰潭一模)已知全集U=R,集合A={x|y=log(x2-x-6),x∈R},B={x|
5
x+1
<1,x∈R}
,则集合A∩?RB=(  )

查看答案和解析>>

同步练习册答案