精英家教网 > 高中数学 > 题目详情

【题目】红队队员甲、乙、丙与蓝队队员ABC进行围棋比赛,甲对A,乙对B,丙对C各一盘,已知甲胜A,乙胜B,丙胜C的概率分别为,假设各盘比赛结果相互独立.

I)求红队至少两名队员获胜的概率;

II)用表示红队队员获胜的总盘数,求的分布列和数学期望

【答案】;()详见解析

【解析】

解:(I)设甲胜A的事件为D,乙胜B的事件为E,丙胜C的事件为F

分别表示甲不胜A、乙不胜B,丙不胜C的事件.

因为

红队至少两人获胜的事件有:

由于以上四个事件两两互斥且各盘比赛的结果相互独立,因此红队至少两人获胜的概率

II)由题意知可能的取值为0123

又由(I)知是两两互斥事件,且各盘比赛的结果相互独立,

因此

由对立事件的概率公式得

所以的分布列为:











因此

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱中,分别是的中点.

1)求证:四点共面;

2)求证:平面平面

3)若分别为的中点,求证:平面平面.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数y=f(x)(x∈R)满足f(1+x)=f(1-x)且x∈[-1,1]时,f(x)=1-x2,函数g(x)=则函数h(x)=f(x)-g(x)在区间[-5,5]内的零点的个数为

A. 7 B. 8 C. 9 D. 10

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某居民小区有两个相互独立的安全防范系统(简称系统),系统在任意时刻发生故障的概率分别为.

1)求在任意时刻至少有一个系统不发生故障的概率;

2)设系统3次相互独立的检测中不发生故障的次数为随机变量,求的概率分布列及数学期望.(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,内角A,B,C的对边分别为a,b,c,已知.

(1)求角C的值;

(2)若c=2,且△ABC的面积为,求a,b.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)是否存在实数,使得函数的定义域和值域都是若存在,请求出的值若不存在,请说明理由

(2)若存在实数,使得函数的定义域是值域是,求实数的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某人在如图所示的直角边长为4米的三角形地块的每个格点(指纵、横直线的交叉点以及三角形的顶点)处都种了一株相同品种的作物.根据历年的种植经验,一株该种作物的年收货量(单位:kg)与它的相近作物株数之间的关系如下表所示:

X

1

2

3

4

Y

51

48

45

42

这里,两株作物相近是指它们之间的直线距离不超过1米.

)完成下表,并求所种作物的平均年收获量;

Y

51

48

45

42

频数


4



(Ⅱ)在所种作物中随机选取一株,求它的年收获量至少为48kg的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)求曲线在点处的切线方程;

2)若关于的方程有三个不同的实根,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面是平行四边形, 平面,点 分别为 的中点,且 .

(1)证明: 平面

(2)设直线与平面所成角为,当内变化时,求二面角的取值范围.

查看答案和解析>>

同步练习册答案