精英家教网 > 高中数学 > 题目详情
16.已知函数f(x)=3x3-3ax2+6x在R上单调递增,求a的取值范围.

分析 由f(x)是R上的增函数,得f′(x)≥0恒成立,运用判别式小于等于0,解不等式即可求出a的取值范围.

解答 解:∵f(x)是R上的单调递增函数,且f′(x)=9x2-6ax+6,
∴f′(x)≥0恒成立,即9x2-6ax+6≥0,
∴判别式△=36a2-4×9×6≤0,
解得-$\sqrt{6}$≤a≤$\sqrt{6}$,
∴a的取值范围是[-$\sqrt{6}$,$\sqrt{6}$].

点评 本题考查了利用函数的导数来判定函数的单调性问题,同时考查二次不等式恒成立问题,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.某企业生产一种产品,其成本为每件16元,经调研,该产品以20元一件投放市场,每年能销售360件,若产品以25元/件投放市场,每年能销售210件,假定年销售件数y是价格x元/件的一次函数.
(1)试求y与x之间的关系式.
(2)在企业不积压且不考虑其他因素的条件下,问销售价格定为多少时,才能使每年获得最大利润?每年的最大利润是多少?(总利润=销售总收入-总成本)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在如图所示的几何体中,四边形ABCD为正方形,PA⊥平面ABCD,PA∥BE,AB=PA=4,BE=2.
(Ⅰ)求证:CE∥平面PAD;
(Ⅱ)求PD与平面PCE所成角的正弦值;
(Ⅲ)在棱AB上是否存在一点F,使得平面DEF⊥平面PCE?如果存在,求$\frac{AF}{AB}$的值;如果不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知α、β∈($\frac{3π}{4}$,π),sin(α+β)=-$\frac{3}{5}$,sinα=$\frac{12}{13}$,求sinβ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设函数f(x)=x2-mlnx,h(x)=x2-x+a
(1)当a=0,f(x)≥h(x)在(1,+∞)上恒成立,求实数m的取值范围;
(2)当m=2时,若函数k(x)=f(x)-h(x)在[1,3]上恰有两个不同的零点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在三棱锥S-ABC中,平面SAB⊥平面SBC,BC⊥SA,AS=AB,过A作AP⊥SB,垂足为F,点E、G分别是棱SA,SC的中点
求证:(1)平面EFG∥平面ABC;
(2)AB⊥BC.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知某几何体的三视图如图所示,其中侧视图是边长为2的正三角形,正视图是矩形,且AA1=3,设D为AA1的中点.
(1)作出该几何体的直观图
(2)求证:平面BB1C1C⊥平面BDC1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.曲线y=x(3lnx+1)在点(1,1)处的切线方程为(  )
A.4x-3y-1=0B.3x-2y-1=0C.4x-y-3=0D.x-y=0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设ω=-$\frac{1}{2}$+$\frac{\sqrt{3}}{2}$i
(1)求证:1+ω+ω2=0;
(2)计算:(1+ω-ω2)(1-ω+ω2).

查看答案和解析>>

同步练习册答案