精英家教网 > 高中数学 > 题目详情
求证:a2+b2-ab≥a+b-1.
考点:不等式的证明
专题:证明题,不等式的解法及应用
分析:运用基本不等式可得a2+b2≥2ab,a2+1≥2a,b2+1≥2b,把以上三个式子相加,可得结论.
解答: 证明:∵a2+b2≥2ab,a2+1≥2a,b2+1≥2b,
∴把以上三个式子相加得:2(a2+b2+1)≥2(ab+a+b)
∴a2+b2+1≥ab+a+b,即a2+b2-ab≥a+b-1.
点评:本题考查不等式的证明,考查基本不等式的运用,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知存在正实数a,b,c满足
1
e
c
a
≤2,clnb+clna=a+clnc,则lnb的取值范围是(  )
A、[1,
1
2
+ln2]
B、[1,+∞)
C、(-∞,e-1]
D、[1,e-1]

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义域为R的偶函数f(x)在区间[0,+∞)上单调递减,则满足f(2x-1)≥f(1)的x取值范围是(  )
A、[0,1]
B、[1,+∞)
C、(-∞,0]
D、(-∞,0]∪[1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

设随机变量X等可能地取值1,2,3,…,10,则P(X<6)的值为(  )
A、0.3B、0.5
C、0.6D、0.2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是定义在R上单调递减的奇函数,则满足不等式f[f(t-1)]<0的实数t的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若焦距为4的双曲线的两条渐近线互相垂直,则此双曲线的实轴长为(  )
A、4
2
B、2
2
C、4
D、2

查看答案和解析>>

科目:高中数学 来源: 题型:

某袋中有10个乒乓球,其中有7个新、3个旧球,从袋中任取3个来用,用后放回袋中(新球用后变为旧球),记此时袋中旧球个数为X,求X的数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线C:
x2
a2
-
y2
b2
=1(a>0,b>0)的左、右焦点分别为F1,F2,过点F2作双曲线C的一条渐近线的垂线,垂足为H,交双曲线于点M且
F2M
=2
MH
,则双曲线C的离心率为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

退休年龄延迟是平均预期寿命延长和人口老龄化背景下的一种趋势.某机构为了解某城市市民的年龄构成,从该城市市民中随机抽取年龄段在20~80岁(含20岁和80岁)之间的600人进行调查,并按年龄层次[20,30),[30,40),[40,50),[50,60),[60,70),[70,80]绘制频率分布直方图,如图所示.若规定年龄分布在[20,40)岁的人为“青年人”,[40,60)为“中年人”,[60,80]为“老年人”.

(Ⅰ)若每一组数据的平均值用该区间中点值来代替,试估算所调查的600人的平均年龄;
(Ⅱ)将上述人口分布的频率视为该城市在20-80年龄段的人口分布的概率.从该城市20-80年龄段市民中随机抽取3人,记抽到“老年人”的人数为X,求随机变量X的分布列和数学期望.

查看答案和解析>>

同步练习册答案