精英家教网 > 高中数学 > 题目详情
若实数x,y满足不等式组
x-2≤0
y-1≤0
x+2y-3≥0
,则目标函数z=x-2y的最大值是(  )
A、1B、2C、3D、4
考点:简单线性规划
专题:数形结合,不等式的解法及应用
分析:由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,求得最优解的坐标,代入目标函数得答案.
解答: 解:由约束条件
x-2≤0
y-1≤0
x+2y-3≥0
作出可行域如图,

化目标函数z=x-2y为y=
1
2
x-
z
2

由图可知,当直线y=
1
2
x-
z
2
过C(2,
1
2
)时,直线在y轴上的截距直线,z最大.
z=2-2×
1
2
=1

故选:A.
点评:本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知S是△ABC所在平面外一点,∠ASC=90°,∠ASB=∠BSC=60°,且SA=SB=SC.
(1)求证:平面SAC⊥平面ABC;
(2)求二面角B-AS-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2x2+bx+c(b、c∈R)在x=-1处取得极小值m-2(m∈R且m≠0),设φ(x)=
f(x)
x2
,当x∈[-4,-2]时,函数φ(x)的最大值为
m2
32
+1,则实数m的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)=xlnx,g(x)=x2-1.
(1)令h(x)=f(x)-g(x),求h(x)的单调区间;
(2)若当x≥1时,f(x)-mg(x)≤0恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

若直线a?平面α,直线b?平面β,则直线a和b的位置关系
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
2
3
x3-
1
2
ax2+x+2.
(Ⅰ)若f(x)在R上单调递增,求a的取值范围;
(Ⅱ)设f(x)的导函数为f′(x).若?α∈(
π
4
π
2
)使f′(sinα)=f′(cosα)成立.求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-kx-8.
(1)若函数f(x)是偶函数,求f(x)在R上的值域;
(2)若把函数f(x)在区间[0,1]上的最小值记为g(k),求g(k)的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,若acosA=bcosB,则△ABC的形状一定是(  )
A、等腰直角三角形
B、直角三角形
C、等腰三角形
D、等腰或直角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:

已知方程x2+y2-2x-4y+m=0,
(1)若此方程表示圆,求实数m的取值范围;
(2)若(1)中的圆与直线x+2y-4=0相交于A、B两点,且以AB为直径的圆经过坐标原点O,求m的值;
(3)在(2)的条件下,求以AB为直径的圆的方程.

查看答案和解析>>

同步练习册答案