精英家教网 > 高中数学 > 题目详情
15.已知函数f(x)=ax2(a>0),点A(5,0),P(1,a),若存在点Q(k,f(k))(k>0),要使$\overrightarrow{OP}$=λ($\frac{\overrightarrow{OA}}{|OA|}$+$\frac{\overrightarrow{OQ}}{|OQ|}$)(λ为常数),则k的取值范围为(2,+∞).

分析 根据向量$\overrightarrow{OP}$和$\frac{\overrightarrow{OA}}{|OA|}$+$\frac{\overrightarrow{OQ}}{|OQ|}$共线得出a,k的关系式,化简即可得出k=$\frac{2}{1-{a}^{2}}$.根据条件得出0<1-a2<1,

解答 解:Q(k,ak2),$\frac{\overrightarrow{OA}}{|OA|}$=(1,0),$\frac{\overrightarrow{OQ}}{|OQ|}$=($\frac{k}{\sqrt{{a}^{2}{k}^{4}+{k}^{2}}}$,$\frac{a{k}^{2}}{\sqrt{{a}^{2}{k}^{4}+{k}^{2}}}$),$\overrightarrow{OP}$=(1,a).
∴$\frac{\overrightarrow{OA}}{|OA|}$+$\frac{\overrightarrow{OQ}}{|OQ|}$=(1+$\frac{k}{\sqrt{{a}^{2}{k}^{4}+{k}^{2}}}$,$\frac{a{k}^{2}}{\sqrt{{a}^{2}{k}^{4}+{k}^{2}}}$),
∵$\overrightarrow{OP}$=λ($\frac{\overrightarrow{OA}}{|OA|}$+$\frac{\overrightarrow{OQ}}{|OQ|}$)(λ为常数),
∴$\frac{a{k}^{2}}{\sqrt{{a}^{2}{k}^{4}+{k}^{2}}}$-a(1+$\frac{k}{\sqrt{{a}^{2}{k}^{4}+{k}^{2}}}$)=0,
∴ak2-ak=a$\sqrt{{a}^{2}{k}^{4}+{k}^{2}}$=ak$\sqrt{{a}^{2}{k}^{2}+1}$,
∴k-1=$\sqrt{{a}^{2}{k}^{2}+1}$,即k2-2k+1=a2k2+1,
若a=1,则k=0,不符合题意;
∴a≠1,∴k=$\frac{2}{1-{a}^{2}}$.
∵a>0且a≠1,k>0,
∴0<1-a2<1,
∴$\frac{2}{1-{a}^{2}}$>2.
故答案为(2,+∞).

点评 本题考查了向量的共线定理,二次函数的性质,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.已知全集U={1,2,3,4,5,6},集合P={1,3,5},Q={1,2,4},则(∁UP)∩Q=(  )
A.{3,5}B.{2,4}C.{1,2,4,6}D.{1,2,3,4,5}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知正项数列{an}的前n项和为Sn,数列{an}满足,2Sn=an(an+1).
(1)求数列{an}的通项公式;
(2)设数列{$\frac{1}{{{{({a_n}+2)}^2}}}$}的前n项和为An,求证:对任意正整数n,都有An<$\frac{1}{2}$成立;
(3)数列{bn}满足bn=($\frac{1}{2}$)nan,它的前n项和为Tn,若存在正整数n,使得不等式(-2)n-1λ<Tn+$\frac{n}{2^n}$-2n-1成立,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{2}+1(x≤0)}\\{-2x(x>0)}\end{array}\right.$,则f[f(x)]=$\left\{\begin{array}{l}{-2({x}^{2}+1)}&{x≤0}\\{4{x}^{2}+1}&{x>0}\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.函数f(x)=x2-4x-12,x∈[-5,5]的单调递增区间为[2,5].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.复数z=(2-i)(1+2i)在复平面内对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知$tan(θ+\frac{π}{4})=\frac{1}{7}$且-$\frac{π}{2}$<θ<0,则sinθ=(  )
A.$\frac{4}{5}$B.$\frac{3}{5}$C.$-\frac{3}{5}$D.$-\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设min{p,q,r}为表示p,q,r三者中较小的一个,若函数f(x)=min{x+1,-2x+7,x2-x+1},且函数f(x)的图象与直线y=m有四个交点,则m的取值范围是(  )
A.[$\frac{3}{4}$,1]B.[$\frac{3}{4}$,1)C.($\frac{3}{4}$,1]D.($\frac{3}{4}$,1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知集合M={x|x2>4},N={-3,-2,2,3,4},则M∩N=(  )
A.{3,4}B.{-3,3,4}C.{-2,3,4}D.{-3,-2,2,3,4}

查看答案和解析>>

同步练习册答案