精英家教网 > 高中数学 > 题目详情
3.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{2}+1(x≤0)}\\{-2x(x>0)}\end{array}\right.$,则f[f(x)]=$\left\{\begin{array}{l}{-2({x}^{2}+1)}&{x≤0}\\{4{x}^{2}+1}&{x>0}\end{array}\right.$.

分析 可先判断出x≤0时,f(x)>0,而x>0时,f(x)<0,从而得出:x≤0时,f(x2+1)=-2(x2+1),x>0时,f(-2x)=(-2x)2+1,从而可写出f[f(x)]的解析式.

解答 解:x≤0时,f(x)=x2+1≥1,x>0时,f(x)=-2x<0;
∴$f[f(x)]=\left\{\begin{array}{l}{-2({x}^{2}+1)(x≤0)}\\{4{x}^{2}+1(x>0)}\end{array}\right.$.
故答案为:$\left\{\begin{array}{l}{-2({x}^{2}+1)}&{x≤0}\\{4{x}^{2}+1}&{x>0}\end{array}\right.$.

点评 考查分段函数的定义,已知分段函数f(x),求f[f(x)]的方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.已知m,n是两条不同的直线,α,β,γ是三个不同的平面,有下列四个命题:
①若m⊥α,m⊥β,则α∥β;
②若α∥γ,β∥γ,则α∥β;
③若m?α,n?β,m∥n,则α∥β;
④若m,n是异面直线,m?α,n?β,n∥α,m∥β,则α∥β.
其中正确的命题有①②④.(填写所有正确命题的编号)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.S=(x-1)5+5(x-1)4+10(x-1)3+10(x-1)2+5(x-1)+1,则合并同类项后S=(  )
A.(x-2)5B.(x+1)5
C.x5D.x5+5x4+10x3+10x2+5x+1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知动点M(x,y)到点E(1,0)的距离是它到点F(4,0)的距离的一半.
(I)求动点M的轨迹方程;
(II)已知点A,C,B,D是点M轨迹上的四个点,且AC,BD互相垂直,垂足为M(1,1),求四边形ABCD面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.函数f(x)=$\left\{\begin{array}{l}{2^x}-\frac{1}{x}-1\;,\;x<0\;\\ lnx-{x^2}+2x\;,\;x>0\end{array}$的零点的个数为3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.以直角坐标系xOy的原点O为极点,x轴正半轴为极轴建立极坐际系,已知曲线C的极坐标方程为ρsin2θ=4cosθ,直线l的参数方程为$\left\{\begin{array}{l}{x=1+t}\\{y=\sqrt{3}t}\end{array}\right.$ (t为参数),
(Ⅰ)求C的直角坐标方程;
(Ⅱ)若直线l与曲线C交于A、B两点,求|AB|

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知函数f(x)=ax2(a>0),点A(5,0),P(1,a),若存在点Q(k,f(k))(k>0),要使$\overrightarrow{OP}$=λ($\frac{\overrightarrow{OA}}{|OA|}$+$\frac{\overrightarrow{OQ}}{|OQ|}$)(λ为常数),则k的取值范围为(2,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.(1)在数列{an}中,Sn是其前n项和,已知Sn=2n2-3n+2;求通项an
(2)已知数列{an}满足:a1=1,an+1=2an+3,n∈N*,求通项an

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知圆锥的母线长为8,底面周长为6π,则它的体积为3$\sqrt{55}$π.

查看答案和解析>>

同步练习册答案