精英家教网 > 高中数学 > 题目详情
13.已知圆锥的母线长为8,底面周长为6π,则它的体积为3$\sqrt{55}$π.

分析 圆锥的底面周长,求出底面半径,然后求出圆锥的高,即可求出圆锥的体积.

解答 解:∵圆锥的底面周长为6π,
∴圆锥的底面半径r=3;
双∵圆锥的母线长l=8,
圆锥的高h=$\sqrt{64-9}$=$\sqrt{55}$
所以圆锥的体积V=$\frac{1}{3}π{r}^{2}h$=3$\sqrt{55}$π,
故答案为3$\sqrt{55}$π.

点评 本题是基础题,考查计算能力,圆锥的高的求法,底面半径的求法,是必得分的题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{2}+1(x≤0)}\\{-2x(x>0)}\end{array}\right.$,则f[f(x)]=$\left\{\begin{array}{l}{-2({x}^{2}+1)}&{x≤0}\\{4{x}^{2}+1}&{x>0}\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设min{p,q,r}为表示p,q,r三者中较小的一个,若函数f(x)=min{x+1,-2x+7,x2-x+1},且函数f(x)的图象与直线y=m有四个交点,则m的取值范围是(  )
A.[$\frac{3}{4}$,1]B.[$\frac{3}{4}$,1)C.($\frac{3}{4}$,1]D.($\frac{3}{4}$,1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知向量$\overrightarrow{a}$=(λ+1,1),$\overrightarrow{b}$=(λ+2,2),若($\overrightarrow{a}$-$\overrightarrow{b}$)⊥($\overrightarrow{a}$+$\overrightarrow{b}$),则实数λ=(  )
A.-4B.-3C.-2D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知{an}是等比数列,a2=2,a5=$\frac{1}{4}$,则a1a2+a2a3+…+anan+1=(  )
A.16(1-4-nB.16(1-2-nC.$\frac{32}{3}(1-{4^{-n}})$D.$\frac{32}{3}(1-{2^{-n}})$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.给出下列四个函数,在(0,+∞)为增函数的是(  )
A.y=$\frac{1}{x}$B.y=(x-1)2C.y=2-xD.y=log2(x+2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知集合M={x|x2>4},N={-3,-2,2,3,4},则M∩N=(  )
A.{3,4}B.{-3,3,4}C.{-2,3,4}D.{-3,-2,2,3,4}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.△ABC中,若三个角∠A、∠B、∠C及其所对的边a,b,c均成等差数列,△ABC的面积为4$\sqrt{3}$,且∠B=$\frac{π}{3}$,那么b=4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在平面直角坐标系xOy中,已知圆C1:(x+3)2+(y-1)2=4和圆C2:(x-4)2+(y-5)2=4
(I)若直线l过点A(-2,0),且被圆C1截得的弦长为2$\sqrt{3}$,求直线l的方程;
(II)设P为平面上的点,满足:存在过点P的无穷多对互相垂直的直线l1和l2,它们分别与圆C1和圆C2相交,且直线l1被圆C1截得的弦长与直线l2被圆C2截得的弦长相等,试求所有满足条件的点P的坐标.

查看答案和解析>>

同步练习册答案