精英家教网 > 高中数学 > 题目详情
10.函数f(x)=x2-4x-12,x∈[-5,5]的单调递增区间为[2,5].

分析 求出f(x)的对称轴,根据对称轴和开口方向判断单调性即可.

解答 解:f(x)=(x-2)2-16,
∴f(x)的图象开口向上,对称轴为x=2.
∴f(x)在[2,5]上单调递增,
故答案为[2,5].

点评 本题考查了二次函数的单调性,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.如图,过圆内接四边形ABCD的顶点C引切线MN,AB为圆的直径.
(Ⅰ)若∠BCM=30°,求∠ABC;
(Ⅱ)已知E为线段AB上一点,满足AE=3BE,CE⊥AB,求证:BC:AE=2:3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.Sn为数列{an}的前n项和,已知an>0,an2+2an=4Sn+3.
(1)求{an}的通项公式;
(2)设bn=$\frac{1}{{{a_n}{a_{n+1}}}}$,设数列{bn}前n项和Tn,且λ≤Tn对一切n∈N*都成立,试求λ的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.函数f(x)=$\left\{\begin{array}{l}{2^x}-\frac{1}{x}-1\;,\;x<0\;\\ lnx-{x^2}+2x\;,\;x>0\end{array}$的零点的个数为3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若复数z=2+i,则$\frac{z•\overline{z}}{{i}^{2}}$等于(  )
A.5B.-5C.5iD.-5i

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知函数f(x)=ax2(a>0),点A(5,0),P(1,a),若存在点Q(k,f(k))(k>0),要使$\overrightarrow{OP}$=λ($\frac{\overrightarrow{OA}}{|OA|}$+$\frac{\overrightarrow{OQ}}{|OQ|}$)(λ为常数),则k的取值范围为(2,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知函数f(x)=$\left\{\begin{array}{l}{\sqrt{x},x>1}\\{{2}^{|x|},x≤1}\end{array}\right.$,函数g(x)=f(x)-k有3个零点,则实数k的取值范围为(  )
A.(0,+∞)B.[1,+∞)C.(0,2)D.(1,2]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.执行如图所示的程序框图,若输出的结果为63,则判断框中应填入的条件为(  )
A.i≤4B.i≤5C.i≤6D.i≤7

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=lnx+ax2
(1)讨论f(x)的单调性;
(2)设a>1,若对任意x1,x2∈(0,+∞),恒有|f(x1)-f(x2)|≥4|x1-x2|,求a的取值范围.

查看答案和解析>>

同步练习册答案