精英家教网 > 高中数学 > 题目详情
2.已知函数f(x)=$\left\{\begin{array}{l}{\sqrt{x},x>1}\\{{2}^{|x|},x≤1}\end{array}\right.$,函数g(x)=f(x)-k有3个零点,则实数k的取值范围为(  )
A.(0,+∞)B.[1,+∞)C.(0,2)D.(1,2]

分析 函数g(x)=f(x)-k有3个零点可化为函数f(x)与y=k有3个不同的交点,从而作图,结合图象求解即可.

解答 解:∵函数g(x)=f(x)-k有3个零点,
∴方程f(x)=k有且只有3个解,
∴函数f(x)与y=k有3个不同的交点,
∴作函数f(x)=$\left\{\begin{array}{l}{\sqrt{x},x>1}\\{{2}^{|x|},x≤1}\end{array}\right.$与y=k的图象如下,

结合图象可知,
1<k≤2,
故选D.

点评 本题考查了函数的零点与函数的图象的交点个数的关系应用,同时考查了数形结合的思想应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.函数f(x)=$\frac{x}{1-x}$+$\sqrt{x+1}$的定义域是(  )
A.[-1,+∞)B.(-∞,-1)C.(-∞,+∞)D.[-1,1)∪(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知集合A={x|x2-5x+4≤0},B={-1,0,1,2,3},则A∩B=(  )
A.{-1,0,1}B.{0,1,2}C.{1,2,3}D.{1,2,3,4}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.函数f(x)=x2-4x-12,x∈[-5,5]的单调递增区间为[2,5].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.下列说法中,正确说法的个数是③.
①△ABC为直角三角形是其三边关系a2+b2=c2的必要条件;②tanA=tanB是A=B的充分条件;③x2-2x-3=0是x=3的必要条件.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知$tan(θ+\frac{π}{4})=\frac{1}{7}$且-$\frac{π}{2}$<θ<0,则sinθ=(  )
A.$\frac{4}{5}$B.$\frac{3}{5}$C.$-\frac{3}{5}$D.$-\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.下列各组中的两个函数是同一函数的为(  )
①y=$\frac{(x+3)(x-5)}{x+3}$,y=x-5,
②y=x2-1,y=$\sqrt{({x}^{2}-1)^{2}}$;
③y=x2-1,y=$\root{3}{({x}^{2}-1)^{3}}$,
④y=($\sqrt{2x-5}$)2,y=2x-5.
A.B.C.②④D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.如图,网格纸上小正方形边长为1,粗线是一个棱锥的三视图,则此棱锥的体积为(  ) 
A.$\frac{8}{3}$B.$\frac{4}{3}$C.4$\sqrt{3}$D.2$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知奇函数f(x)满足,x>0时,f(x)=x2-2x;则x<0时,f(x)的解析式为(  )
A.-x2-2xB.-x2+2xC.x2-2xD.x2+2x

查看答案和解析>>

同步练习册答案