精英家教网 > 高中数学 > 题目详情
1.Sn为数列{an}的前n项和,已知an>0,an2+2an=4Sn+3.
(1)求{an}的通项公式;
(2)设bn=$\frac{1}{{{a_n}{a_{n+1}}}}$,设数列{bn}前n项和Tn,且λ≤Tn对一切n∈N*都成立,试求λ的最大值.

分析 (1)由递推关系可得:(an+an-1)(an-an-1)=2(an+an-1).an>0,可得an-an-1=2(n≥2),利用等差数列的通项公式即可得出.
(2)利用“裂项求和”方法与数列的单调性即可得出.

解答 解:(1)由${a_n}^2+2{a_n}=4{S_n}+3$,①
可知${a_{n-1}}^2+2{a_{n-1}}=4{S_{n-1}}+3$,②(n≥2)
①-②得:${a_n}^2-{a_{n-1}}^2+2{a_n}-2{a_{n-1}}=4{a_n}$,
即(an+an-1)(an-an-1)=2(an+an-1).
∵an>0,∴an+an-1≠0,
∴an-an-1=2(n≥2),
∴{an}是以a1=3为首项,d=2为公差的等差数列.
∴${a_n}=2n+1(n∈{N^*})$.
(2)${b_n}=\frac{1}{{{a_n}{a_{n+1}}}}=\frac{1}{(2n+1)(2n+3)}=\frac{1}{2}(\frac{1}{2n+1}-\frac{1}{2n+3})$.
Tn=b1+b2+…+bn=$\frac{1}{2}[(\frac{1}{3}-\frac{1}{5})+(\frac{1}{5}-\frac{1}{7})+…+(\frac{1}{2n+1}-\frac{1}{2n+3})]$=$\frac{n}{3(2n+3)}$.
∵λ≤Tn对一切n∈N*成立,∴λ≤T1
∴$λ≤\frac{1}{15}$,即的最大值为$\frac{1}{15}$.

点评 本题考查了数列递推关系、等差数列的通项公式、“裂项求和”方法与数列的单调性,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.在直角坐标系xOy中,直线l:$\left\{\begin{array}{l}{x=t}\\{y=-\sqrt{3}t}\end{array}\right.$(t为参数),曲线C1:$\left\{\begin{array}{l}{x=cosθ}\\{y=1+sinθ}\end{array}\right.$(θ为参数),以该直角坐标系的原点O为极点,x轴的非负半轴为极轴建立极坐标系,曲线C2的方程为ρ=-2cosθ+2$\sqrt{3}$sinθ.
(1)分别求曲线C1的极坐标方程和曲线C2的直角坐标方程;
(2)设直线l交曲线C1于O、A两点,直线l交曲线C2于O、B两点,求|AB|的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.函数f(x)=$\frac{x}{1-x}$+$\sqrt{x+1}$的定义域是(  )
A.[-1,+∞)B.(-∞,-1)C.(-∞,+∞)D.[-1,1)∪(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=(a-$\frac{1}{2}$)x2+lnx(a∈R).
(I)若函数f(x)在点(1,f(1))处的切线方程为2x+y+b=0,求a,b的值;
(II)若在区间(1,+∞)上,函数f(x)的图象恒在直线y=2ax下方,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.在△ABC中,内角A,B,C所对的边分别是a,b,c,已知a=7,c=5,则$\frac{sinA}{sinC}$的值是(  )
A.$\frac{7}{5}$B.$\frac{5}{7}$C.$±\frac{7}{12}$D.$\frac{5}{12}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知正项数列{an}的前n项和为Sn,数列{an}满足,2Sn=an(an+1).
(1)求数列{an}的通项公式;
(2)设数列{$\frac{1}{{{{({a_n}+2)}^2}}}$}的前n项和为An,求证:对任意正整数n,都有An<$\frac{1}{2}$成立;
(3)数列{bn}满足bn=($\frac{1}{2}$)nan,它的前n项和为Tn,若存在正整数n,使得不等式(-2)n-1λ<Tn+$\frac{n}{2^n}$-2n-1成立,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知集合A={x|x2-5x+4≤0},B={-1,0,1,2,3},则A∩B=(  )
A.{-1,0,1}B.{0,1,2}C.{1,2,3}D.{1,2,3,4}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.函数f(x)=x2-4x-12,x∈[-5,5]的单调递增区间为[2,5].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.如图,网格纸上小正方形边长为1,粗线是一个棱锥的三视图,则此棱锥的体积为(  ) 
A.$\frac{8}{3}$B.$\frac{4}{3}$C.4$\sqrt{3}$D.2$\sqrt{3}$

查看答案和解析>>

同步练习册答案