精英家教网 > 高中数学 > 题目详情
6.每年的4月23日为世界读书日,为调查某高校学生(学生很多)的读书情况,随机抽取了男生,女生各20人组成的一个样本,对他们的年阅读量(单位:本)进行了统计,分析得到了男生年阅读量的频率分布表和女生阅读量的频率分布直方图.
男生年阅读量的频率分布表(年阅读量均在区间[0,60]内):
本/年[0,10)[10,20)[20,30)[30,40)[40,50)[50,60]
频数318422
(Ⅰ)根据女生的频率分布直方图估计该校女生年阅读量的中位数;
(Ⅱ)在样本中,利用分层抽样的方法,从男生年与度量在[20,30),[30,40)的两组里抽取6人,再从这6人中随机抽取2人,求[30,40)这一组中至少有1人被抽中的概率;
(Ⅲ)若年阅读量不小于40本为阅读丰富,否则为阅读不丰富,依据上述样本研究阅读丰富与性别的关系,完成下列2×2列联表,并判断是否有99%的把握认为月底丰富与性别有关.
性别    阅读量丰富不丰富合计
   
   
合计   
P(K2≥k00.0250.0100.005
k05.0246.6357.879
附:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.

分析 (Ⅰ)求出前三组频率之和,即可根据女生的频率分布直方图估计该校女生年阅读量的中位数;
(Ⅱ)确定基本事件的个数,即可求[30,40)这一组中至少有1人被抽中的概率;
(Ⅲ)根据所给数据得出2×2列联表,求出K2,即可判断是否有99%的把握认为月底丰富与性别有关.

解答 解:(Ⅰ)前三组频率之和为0.1+0.2+0.25=0.55,
∴中位数位于第三组,设中位数为a,则$\frac{a-30}{40-a}$=$\frac{0.2}{0.05}$,
∴a=38,
∴估计该校女生年阅读量的中位数为38;
(Ⅱ)利用分层抽样的方法,从男生年与度量在[20,30),[30,40)的两组里抽取6人,从这6人中随机抽取2人,共有方法${C}_{6}^{2}$=15种,各组分别为4人,2人,[30,40)这一组中至少有1人被抽中的概率1-$\frac{{C}_{4}^{2}}{15}$=$\frac{3}{5}$;
(Ⅲ)

性别    阅读量丰富不丰富合计
 416 20 
 9 1120 
合计 13 2740 
K2=$\frac{40(4×11-9×16)^{2}}{20×20×13×27}$≈2.849<6.635,
∴没有99%的把握认为月底丰富与性别有关.

点评 本题考查频率分布直方图,考查概率的计算,考查独立性检验知识的运用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.已知集合A={x|x2-2x-3<0},B={x|-2<x<2},则A∩B=(  )
A.{x|-2<x<2}B.{x|-2<x<3}C.{x|-1<x<3}D.{x|-1<x<2}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知集合A={x|x2-2x-3<0},$B=\{x|\frac{1-x}{x}<0\}$,则A∩B=(  )
A.{x|1<x<3}B.{x|-1<x<3}C.{x|-1<x<0或0<x<3}D.{x|-1<x<0或1<x<3}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知点M是圆心为E的圆(x+$\sqrt{3}$)2+y2=16上的动点,点F($\sqrt{3}$,0),线段MF的垂直平分线交EM于点P.
(Ⅰ)求动点P的轨迹C的方程;
(Ⅱ)过原点O作直线l交(Ⅰ)中的轨迹C于点A,B,点D满足$\overrightarrow{FD}$=$\overrightarrow{FA}$+$\overrightarrow{FB}$,试求四边形AFBD的面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知函数f(x)=(m-2x)lnx-x,x∈(1,e]有两个零点,则实数m的最大值为(  )
A.3e2B.3eC.6e2D.6e

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知点F1,F2分别是双曲线$C:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的左右两焦点,过点F1的直线l与双曲线的左右两支分别交于P,Q两点,若△PQF2是以∠PQF2为顶角的等腰三角形,其中$∠PQ{F_2}∈[\frac{π}{3},π)$,则双曲线离心率e
的取值范围为(  )
A.$[\sqrt{7},3)$B.$[1,\sqrt{7})$C.$[\sqrt{5},3)$D.$[\sqrt{5},\sqrt{7})$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=m-|x-2|,m∈R,且f(x+2)≥0的解集为[-3,3].
(Ⅰ)解不等式:f(x)+f(x+2)>0;
(Ⅱ)若a,b,c均为正实数,且满足a+b+c=m,求证:$\frac{{b}^{2}}{a}$+$\frac{{c}^{2}}{b}$+$\frac{{a}^{2}}{c}$≥3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=$\frac{{a}^{x}}{x}$-lna,(a>0,且a≠1).
(Ⅰ)若a=e,求函数y=f(x)的单调区间;(其中e=2.71828…是自然对数的底数)
(Ⅱ)设函数$g(x)=\frac{e+1}{ex}$,当x∈[-1,0)∪(0,1]时,曲线y=f(x)与y=g(x)有两个交点,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知O为坐标原点,F为抛物线y2=2px(p>0)的焦点,若抛物线与直线l:x-$\sqrt{3}$y-$\frac{p}{2}$=0在第一、四象限分别交于A,B两点.则$\frac{(\overrightarrow{OF}-\overrightarrow{OA})^{2}}{(\overrightarrow{OF}-\overrightarrow{OB})^{2}}$的值等于(  )
A.97+56$\sqrt{3}$B.144C.73+40$\sqrt{3}$D.4p2

查看答案和解析>>

同步练习册答案