精英家教网 > 高中数学 > 题目详情
在平面直角坐标系xOy中,已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的左焦点为F1(-1,0),且点P(
6
2
1
2
)在椭圆C上.
(Ⅰ)求椭圆C的方程;
(Ⅱ)已知直线l:y=kx+m(k≠0)与椭圆C交于M,N两点,直线OM、ON的斜率存在且和为4k,求证:m2为定值.
考点:直线与圆锥曲线的综合问题
专题:圆锥曲线中的最值与范围问题
分析:(Ⅰ)由已知条件求出c=1,点P(
6
2
1
2
)
代入椭圆
x2
a2
+
y2
b2
=1
,求出b=1,由此能求出椭圆C1的方程.
(II)由
x2
2
+y2=1
y=kx+m
,得(1+2k2)x2+4kmx+2m2-2=0,设M(x1,y1),N(x2,y2),由此利用韦达定理结合直线OM、ON的斜率存在且和为4k,得到kOM+kON=2k-
4km2
2m2-2
=4k
.由此能求出m2=
1
2
解答: (Ⅰ)解:∵椭圆C1的左焦点为F1(-1,0),∴c=1,…(1分)
P(
6
2
1
2
)
代入椭圆
x2
a2
+
y2
b2
=1

得4b4-3b2-1=0,即b=1,…(3分)
∴a2=b2+c2=2,…(4分)
∴椭圆C1的方程为
x2
2
+y2=1
.                         …(5分)
(II)证明:由
x2
2
+y2=1
y=kx+m
,消去y并整理得(1+2k2)x2+4kmx+2m2-2=0..…(7分)
△=16k2m2-4(1+2k2)(2m2-2)>0
设M(x1,y1),N(x2,y2),则x1+x2=-
4km
1+2k2
,x1x2=
2m2-2
1+2k2
.…(8分)
∵直线OM、ON的斜率存在且和为4k,
∴kOM+kON=
y1
x1
+
y2
x2
=k+
m
x1
+k+
m
x2

=2k+
m(x1+x2)
x1x2

=2k+
-
4km2
1+2k2
2m2-2
1+2k2
=4k.…(10分)
整理得kOM+kON=2k-
4km2
2m2-2
=4k
.…(11分)
解得m2=
1
2
,为定值.…(13分)
点评:本题考查椭圆方程的求法,考查定值的证明,解题时要认真审题,注意函数与方程思想和等价转化思想的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

圆C1:x2+y2=9与圆C2:x2+y2-4x+2y-3=0的公共弦长为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)=
x,0≤x≤1
e-x,1≤x≤3
,计算
3
0
f(x)dx.

查看答案和解析>>

科目:高中数学 来源: 题型:

新一届中央领导集体非常重视勤俭节约,从“光盘行动”到“节约办春晚”.到饭店吃饭是吃光盘子或时打包带走,称为“光盘族”,否则称为“非光盘族”.政治课上政治老师选派几位同学组成研究性小组,从某社区[25,55]岁的人群中随机抽取n人进行了一次调查,得到如下统计表:
组数分组频数频率光盘族占本组比例
第1组[25,30)500.0530%
第2组[30,35)1000.1030%
第3组[35,40)1500.1540%
第4组[40,45)2000.2050%
第5组[45,50)ab65%
第6组[50,55)2000.2060%
(1)求a,b的值,并估计本社区[25,55)岁的人群中“光盘族”所占比例;
(2)从年龄段在[35,40)与[40,45)的“光盘族”中采用分层抽样方法抽取8人参加节约粮食宣传活动,并从这8人中选取2人作为领队.
(i)已知选取2人中1人来自[35,40)中的前提下,求另一人来自年龄段在[40,45)中的概率;
(ii)求2名领队的年龄之和的期望值.(每个年龄段以中间值计算).

查看答案和解析>>

科目:高中数学 来源: 题型:

在直角坐标系中,角α的顶点在坐标原点,始边在正半轴上,已知α的终边过函数f(x)=-2x与g(x)=-log 
1
2
(-x)两图象的交点,求满足条件的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

为了寻找马航MH370残骸,我国“雪龙号”科考船于2014年3月26日从港口O出发,沿北偏东α角的射线OZ方向航行,而在港口北偏东β角的方向上有一个给科考船补给物资的小岛A,OA=300
13
海里,且tanα=
1
3
,cosβ=
2
13
.现指挥部需要紧急征调位于港口O正东m海里的B处的补给船,速往小岛A装上补给物资供给科考船.该船沿BA方向全速追赶科考船,并在C处相遇.经测算当两船运行的航线与海岸线OB围成的三角形OBC的面积S最小时,这种补给方案最优.
(1)求S关于m的函数关系式S(m);
(2)应征调位于港口正东多少海里处的补给船只,补给方案最优?

查看答案和解析>>

科目:高中数学 来源: 题型:

一盒中装有大小形状均相同的6个小球,其中有4个黑球2个白球,现从中无放回的随机取出小球,每次取一个,直到将两个白球全部取出为止,设此时盒中剩余的黑球数为ξ,
(1)求取出的第三个球为白球的概率;
(2)求随机变量ξ的概率分布列.

查看答案和解析>>

科目:高中数学 来源: 题型:

化简求值:(
1
4
)-2+(
1
6
6
)-
1
3
+
3
+
2
3
-
2
-(1.03)0×(-
6
2
)3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知经过点P(0,2),且与椭圆C:
x2
4
+
y2
2
=1相切的直线有两条,分别为m,n.
(1)求直线m,n的方程;
(2)设直线m,n与椭圆C的两切点分别为C、D(其中C在y轴左侧,D在y轴右侧),分别过C、D两点作相应切线的垂线l1、l2,且l1∩l2=A,椭圆的左右焦点分别为F1、F2,求
F1A
F2A
的值.

查看答案和解析>>

同步练习册答案