精英家教网 > 高中数学 > 题目详情
13.计算:C${\;}_{n+1}^{3}$×C${\;}_{n}^{2-n}$.

分析 根据组合数的意义,先求出n的值,再计算C${\;}_{n+1}^{3}$×C${\;}_{n}^{2-n}$.

解答 解:根据题意,得;
$\left\{\begin{array}{l}{n+1≥3}\\{2-n≥0}\\{n≥2-n}\\{n{∈N}^{*}}\end{array}\right.$,
解得n=2;
∴C${\;}_{n+1}^{3}$×C${\;}_{n}^{2-n}$=${C}_{3}^{3}$×${C}_{2}^{0}$
=1×1
=1.

点评 本题考查了组合数公式的应用问题,也考查了组合数的概念的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知A,B是抛物线y2=2px(p>0)上异于远点P的两点.F是抛物线的焦点,KOA、KOB分别表示直线OA,OB的斜率.且KOA•KOB=λ(λ为小于零的常数)
(1)证明直线AB恒过X轴上的一定点;
(2)设AB的中点为M,点M在抛物线的准线上的射影为点N,若∠AFB=120°,求$\frac{|AB|}{|MN|}$的最小值及取得最小值时λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知数列{an}满足a1=1,an+1=2an+1(n∈N*
(1)求数列{an}的通项公式;
(2)证明:$\frac{1}{a_{2}}$+$\frac{1}{a_{3}}$+…+$\frac{1}{a_{n+1}}$<$\frac{2}{3}$(n∈N*

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知AB是圆O的直径,圆O过BC的中点D,DE⊥AC,若∠ADE=50°,则∠ABD=50°.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.抛物线y2=4x的焦点为F,过点N(3,0)的直线与抛物线相交于A,B两点,与抛物线的准线相交于C,|BF|=3,则△BCF与△ACF的面积之比为$\frac{6}{11}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.设集合M={x|x2+2x>0},N={x|x<0},则M∩N={x|x<-2}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.在如图所示的坐标平面的可行域内(阴影部分且包括边界),若目标函数z=x+ay取得最小值的最优解有无数个,则$\frac{y}{x-a}$的最大值是(  )
A.$\frac{2}{7}$B.$\frac{2}{3}$C.$\frac{1}{6}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=ax,g(x)=lnx,其中a∈R.
(1)若函数F(x)=f(x)-g(x),当a=1时,求函数F(x)的极值;
(2)若函数G(x)=f(sin(x-1))-g(x)在区间(0,1)上为减函数,求a的取值范围;
(3)证明:$\sum_{k=1}^n{sin\frac{1}{k+1}}$<ln(n+1).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知数列{an}是正项等比数列,a1,$\frac{1}{2}$a3,2a2成等差数列,则$\frac{{a}_{2014}+{a}_{2015}}{{a}_{2012}+{a}_{2013}}$=$3+2\sqrt{2}$.

查看答案和解析>>

同步练习册答案