| A. | $\frac{2}{7}$ | B. | $\frac{2}{3}$ | C. | $\frac{1}{6}$ | D. | $\frac{1}{4}$ |
分析 由题设条件,目标函数z=x+ay,取得最小值的最优解有无数个知取得最优解必在边界上而不是在顶点上,故目标函数中y的系数必为负,最小值应在左上方边界AC上取到,即x+ay=0应与直线AC平行,进而计算可得a值,最后结合目标函数$\frac{y}{x-a}$的几何意义求出答案即可.
解答
解:由题意,最优解应在线段AC上取到,故x+ay=0应与直线AC平行,
∵kAC=$\frac{2-1}{4-1}$=$\frac{1}{3}$,
∴-$\frac{1}{a}$=$\frac{1}{3}$,
∴a=-3,
则$\frac{y}{x-a}$=$\frac{y-0}{x-(-3)}$表示点P(-3,0)与可行域内的点Q(x,y)连线的斜率,
由图得,当Q(x,y)=C(4,2)时,
其取得最大值,最大值是$\frac{2}{4-(-3)}$=$\frac{2}{7}$.
故选A.
点评 本题考查线性规划最优解的判定,属于该知识的逆用题型,利用最优解的特征,判断出最优解的位置求参数,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充要条件 | D. | 既不充分也不必要条件 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{8}{ln3}$ | B. | 8 | C. | $\frac{9}{ln3}$ | D. | 9 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com