精英家教网 > 高中数学 > 题目详情
15.如图,在四棱锥P-ABCD中,已知底面ABCD是平行四边形,且PA⊥底面ABCD,BD⊥PC,E是PA的中点.
(1)求证:平面PAC⊥平面EBD;
(2)若PA=AB=AC=2,求三棱锥P-EBD的高.

分析 (1)首先根据线面的垂直转化成线线垂直,进一步利用线面垂直的判定得到线面垂直,进一步转化成面面垂直.
(2)利用(1)的结论得到平行四边形ABCD为菱形,进一步求出${S}_{△ABD}=\sqrt{3}$和${S}_{△EBD}=\sqrt{6}$,最后利用锥体的体积公式求出锥体的高.

解答 证明:(1)在四棱锥P-ABCD中,已知底面ABCD是平行四边形,且PA⊥底面ABCD,
BD?平面ABCD,
则:PA⊥BD,
又BD⊥PC,
所以:BD⊥平面PAC.
由于BD?平面EBD,
所以:平面PAC⊥平面EBD.
(2)由(1)得到:BD⊥平面PAC,
所以:BD⊥AC.
所以:平行四边形ABCD为菱形.
由于PA=AB=AC=2,
所以:∠BAD=120°,
S△ABD=$\frac{1}{2}AC•\frac{1}{2}BD$=$\sqrt{3}$
E是PA的中点.连接OE,
得到:BD⊥OE.
所以:PC=$\sqrt{{PA}^{2}+{AC}^{2}}=2\sqrt{2}$,
所以:$OE=\frac{1}{2}PC=\sqrt{2}$,
S△EBD=$\frac{1}{2}$BD•OE=$\sqrt{6}$.
设三棱锥P-EBD的高为h,则:VP-EBD=VE-ABD
$\frac{1}{3}{S}_{△EBD}•h=\frac{1}{3}{S}_{△ABD}•AE$,
解得:h=$\frac{\sqrt{2}}{2}$.

点评 本题考查的知识要点:线面垂直的判定定理和面面垂直的判定定理,锥体的体积公式的应用.及相关的运算问题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.将函数$y=cos(\frac{1}{2}x-\frac{π}{6})$图象向左平移$\frac{π}{3}$个长度单位,再把所得图象上各点的横坐标缩短到原来的一半(纵坐标不变),所得图象的函数解析式是(  )
A.$y=cos(x+\frac{π}{6})$B.$y=cos\frac{1}{4}x$C.y=cosxD.$y=cos(\frac{1}{4}x-\frac{π}{3})$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$是夹角为45°的两个单位向量,则|$\sqrt{2}$$\overrightarrow{{e}_{1}}$-$\overrightarrow{{e}_{2}}$|=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知A,B是抛物线y2=2px(p>0)上异于远点P的两点.F是抛物线的焦点,KOA、KOB分别表示直线OA,OB的斜率.且KOA•KOB=λ(λ为小于零的常数)
(1)证明直线AB恒过X轴上的一定点;
(2)设AB的中点为M,点M在抛物线的准线上的射影为点N,若∠AFB=120°,求$\frac{|AB|}{|MN|}$的最小值及取得最小值时λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知椭圆C:$\frac{y^2}{a^2}+\frac{x^2}{b^2}$=1(a>b>0)的离心率为$\frac{{\sqrt{2}}}{2}$,其四个顶点组成的菱形的面积是4$\sqrt{2}$,O为坐标原点,若点A在直线x=2上,点B在椭圆C上,且OA⊥OB.
(Ⅰ) 求椭圆C的方程;
(Ⅱ)求线段AB长度的最小值;
(Ⅲ)试判断直线AB与圆x2+y2=2的位置关系,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知抛物线x2=2py(p>0)的焦点为F,过F作倾斜角为30°的直线,与抛物线交于A,B两点,若$\frac{|AF|}{|BF|}$∈(0,1),则$\frac{|AF|}{|BF|}$=$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.求值:$\frac{tan(-150°)cos(-210°)cos660°}{tan(-240°)sin(-330°)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知数列{an}满足a1=1,an+1=2an+1(n∈N*
(1)求数列{an}的通项公式;
(2)证明:$\frac{1}{a_{2}}$+$\frac{1}{a_{3}}$+…+$\frac{1}{a_{n+1}}$<$\frac{2}{3}$(n∈N*

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.在如图所示的坐标平面的可行域内(阴影部分且包括边界),若目标函数z=x+ay取得最小值的最优解有无数个,则$\frac{y}{x-a}$的最大值是(  )
A.$\frac{2}{7}$B.$\frac{2}{3}$C.$\frac{1}{6}$D.$\frac{1}{4}$

查看答案和解析>>

同步练习册答案