精英家教网 > 高中数学 > 题目详情
10.已知椭圆C:$\frac{y^2}{a^2}+\frac{x^2}{b^2}$=1(a>b>0)的离心率为$\frac{{\sqrt{2}}}{2}$,其四个顶点组成的菱形的面积是4$\sqrt{2}$,O为坐标原点,若点A在直线x=2上,点B在椭圆C上,且OA⊥OB.
(Ⅰ) 求椭圆C的方程;
(Ⅱ)求线段AB长度的最小值;
(Ⅲ)试判断直线AB与圆x2+y2=2的位置关系,并证明你的结论.

分析 (Ⅰ)由椭圆的离心率公式及椭圆的性质,根据已知离心率与四个顶点组成菱形面积求出a2与b2的值,即可确定出椭圆C的方程;
(Ⅱ)设点A,B的坐标分别为(2,t),(x0,y0),由两向量垂直,利用平面向量数量积运算法则列出关系式,表示出t,再将B坐标代入椭圆方程得到关系式,表示出|AB|2,整理后利用基本不等式求出AB的最小值即可;
(Ⅲ)直线AB与圆x2+y2=2相切,理由为:设点A,B的坐标分别为(2,t),(x0,y0),由两向量垂直,利用平面向量数量积运算法则列出关系式,表示出t,进而表示出直线AB方程,利用点到直线的距离公式表示出圆心O到直线AB的距离d,整理得到d=r,即可得证.

解答 解:(Ⅰ)由题意$\left\{{\begin{array}{l}{e=\frac{c}{a}=\frac{{\sqrt{2}}}{2}}\\{2ab=4\sqrt{2}}\end{array}}\right.$,解得a2=4,b2=2.
故椭圆C的标准方程为$\frac{{y}^{2}}{4}$+$\frac{{x}^{2}}{2}$=1;
(Ⅱ)设点A,B的坐标分别为(2,t),(x0,y0),其中y0≠0,
∵OA⊥OB,∴$\overrightarrow{OA}$•$\overrightarrow{OB}$=0,即2x0+ty0=0,
解得:t=-$\frac{2{x}_{0}}{{y}_{0}}$,
又2x02+y02=4,
∴|AB|2=(x0-2)2+(y0-t)2=(x0-2)2+(y0+$\frac{2{x}_{0}}{{y}_{0}}$)2=x02+y02+$\frac{4{{x}_{0}}^{2}}{{{y}_{0}}^{2}}$+4
=y02+$\frac{4-{{y}_{0}}^{2}}{2}$+$\frac{2(4-{{y}_{0}}^{2})}{{{y}_{0}}^{2}}$+4=$\frac{{{y}_{0}}^{2}}{2}$+$\frac{8}{{{y}_{0}}^{2}}$+4≥4+4=8(0≤y02≤4),
当且仅当y02=4时等号成立,此时|AB|2≥8,
则线段AB长度的最小值为2$\sqrt{2}$;
(Ⅲ)直线AB与圆x2+y2=2相切,理由为:
证明:设点A,B的坐标分别为(x0,y0),(2,t),其中y0≠0,
∵OA⊥OB,∴$\overrightarrow{OA}$•$\overrightarrow{OB}$=0,即2x0+ty0=0,
解得:t=-$\frac{2{x}_{0}}{{y}_{0}}$,
∵直线AB的方程为y-t=$\frac{{y}_{0}-t}{{x}_{0}-2}$(x-2),即(y0-t)x-(x0-2)y-2y0+tx0=0,
∴圆心O到直线AB的距离d=$\frac{|{x}_{0}-2{y}_{0}|}{\sqrt{({y}_{0}-t)^{2}+({x}_{0}-2)^{2}}}$,
∵2x02+y02=4,t=-$\frac{2{x}_{0}}{{y}_{0}}$,
∴d=$\frac{|2{y}_{0}+\frac{2{{x}_{0}}^{2}}{{y}_{0}}|}{\sqrt{{{x}_{0}}^{2}+{{y}_{0}}^{2}+\frac{4{{x}_{0}}^{2}}{{{y}_{0}}^{2}}+4}}$=$\frac{|\frac{4+{{y}_{0}}^{2}}{{y}_{0}}|}{\sqrt{\frac{{{y}_{0}}^{4}+8{{y}_{0}}^{2}+16}{2{{y}_{0}}^{2}}}}$=$\sqrt{2}$,
则直线AB与圆x2+y2=2相切.…(13分)

点评 此题考查了直线与圆锥曲线的综合问题,解决此类问题的必须熟悉曲线的定义和曲线的图形特征,这也是高考常考的知识点.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.如图,四棱锥E-ABCD中,侧面EAB⊥底面ABCD,底面ABCD是直角梯形,
AD∥BC,AB=BC=2AD,∠DAB=90°,△EAB是正三角形,F为EC的中点.
(Ⅰ)求证:DF∥平面EAB;
(Ⅱ)求证:DF⊥平面EBC.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.某袋中有编号为1,2,3,4,5,6的6个小球(小球除编号外完全相同),甲先从袋中摸出一个球,记下编号后放回,乙再从袋中摸出一个球,记下编号,则甲、乙两人所摸出球的编号不同的概率是(  )
A.$\frac{1}{5}$B.$\frac{1}{6}$C.$\frac{5}{6}$D.$\frac{35}{36}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.在平面直角坐标系xOy中,已知圆O:x2+y2=16,点P(2,2),M、N是圆O上相异两点,且PM⊥PN,若$\overrightarrow{PQ}$=$\overrightarrow{PM}$+$\overrightarrow{PN}$,则|$\overrightarrow{PQ}$|的取值范围是[2$\sqrt{6}$-2$\sqrt{2}$,2$\sqrt{6}$+2$\sqrt{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知双曲线的焦点在x轴上,两个顶点A1,A2间的距离为2,焦点到渐近线的距离为$\sqrt{2}$.
(1)求双曲线的标准方程;
(2)设双曲线上任意一点的坐标为M(异于两个顶点),直线MA1和MA2的斜率分别是k1,k2.求k1k2的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,在四棱锥P-ABCD中,已知底面ABCD是平行四边形,且PA⊥底面ABCD,BD⊥PC,E是PA的中点.
(1)求证:平面PAC⊥平面EBD;
(2)若PA=AB=AC=2,求三棱锥P-EBD的高.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数$f(x)=lnx+\frac{1-x}{ax}(a>0)$.
(Ⅰ)若函数f(x)在区间[1,+∞)内单调递增,求实数a的取值范围;
(Ⅱ)求函数f(x)在区间[1,e]上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在平面直角坐标系xOy中,已知椭圆C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0),的离心率为$\frac{{\sqrt{2}}}{2}$,且经过点(1,$\frac{{\sqrt{6}}}{2}$),过椭圆的左顶点A作直线l⊥x轴,点M为直线l上的动点(点M与点A在不重合),点B为椭圆右顶点,直线BM交椭圆C于点P.
(1)求椭圆C的方程;
(2)求证:AP⊥OM;
(3)试问$\overrightarrow{OP}$•$\overrightarrow{OM}$是否为定值?若是定值,请求出该定值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.化简:$\frac{cos(\frac{π}{2}+α)•cos(2π-α)•sin(-α+\frac{3π}{2})}{sin(-π-α)•sin(\frac{3π}{2}+α)}$.

查看答案和解析>>

同步练习册答案