精英家教网 > 高中数学 > 题目详情
10.直三棱柱ABC-A1B1C1的顶点在同一个球面上,AB=3,AC=4,AA1=2$\sqrt{6}$,∠BAC=90°,则球的表面积49π.

分析 画出球的内接直三棱ABC-A1B1C1,求出球的半径,然后可求球的表面积.

解答 解:如图,由于∠BAC=90°,连接上下底面外心PQ,O为PQ的中点,OP⊥平面ABC,则球的半径为OB,
由题意,AB=3,AC=4,∠BAC=90°,所以BC=5,
因为AA1=2$\sqrt{6}$,所以OP=$\sqrt{6}$,
所以OB=$\sqrt{6+\frac{25}{4}}$=$\frac{7}{2}$
所以球的表面积为:4π×OB2=49π
故答案为:49π.

点评 本题考查球的体积和表面积,球的内接体问题,考查学生空间想象能力理解失误能力,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.已知抛物线x2=2py(p>0)的焦点为F,过F作倾斜角为30°的直线,与抛物线交于A,B两点,若$\frac{|AF|}{|BF|}$∈(0,1),则$\frac{|AF|}{|BF|}$=$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知AB是圆O的直径,圆O过BC的中点D,DE⊥AC,若∠ADE=50°,则∠ABD=50°.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.设集合M={x|x2+2x>0},N={x|x<0},则M∩N={x|x<-2}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.在如图所示的坐标平面的可行域内(阴影部分且包括边界),若目标函数z=x+ay取得最小值的最优解有无数个,则$\frac{y}{x-a}$的最大值是(  )
A.$\frac{2}{7}$B.$\frac{2}{3}$C.$\frac{1}{6}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知函数f(x)=sinx+$\sqrt{3}$cosx,则下列命题正确的是①③④⑤
(填上你认为正确的所有命题的序号)
①函数f(x)的最大值为2;
②函数f(x)的图象关于点(-$\frac{π}{6}$,0)对称;
③函数f(x)的图象与函数h(x)=2sin(x-$\frac{2π}{3}$)的图象关于x轴对称;
④若实数m使得方程f(x)=m在[0,2π]上恰好有三个实数解x1,x2,x3,则x1+x2+x3=$\frac{7π}{3}$;
⑤设函数g(x)=f(x)+2x,若g(θ-1)+g(θ)+g(θ+1)=-2π,则θ=-$\frac{π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=ax,g(x)=lnx,其中a∈R.
(1)若函数F(x)=f(x)-g(x),当a=1时,求函数F(x)的极值;
(2)若函数G(x)=f(sin(x-1))-g(x)在区间(0,1)上为减函数,求a的取值范围;
(3)证明:$\sum_{k=1}^n{sin\frac{1}{k+1}}$<ln(n+1).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.半径为1,圆心角为90°的直角扇形OAB中,Q为$\widehat{AB}$上一点,点P在扇形内,且$\overrightarrow{OP}$=t$\overrightarrow{OA}$+(1-t)$\overrightarrow{OB}$,则$\overrightarrow{OP}$•$\overrightarrow{OQ}$的最大值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.《莱茵德纸草书》是世界上最古老的数学著作之一.书中有一道这样的题:把100个面包分给5个人,使每个人的所得成等差数列,且使较大的三份之和的$\frac{1}{7}$是较小的两份之和,则最小一份的量为(  )
A.$\frac{5}{2}$B.$\frac{5}{4}$C.$\frac{5}{3}$D.$\frac{5}{6}$

查看答案和解析>>

同步练习册答案