精英家教网 > 高中数学 > 题目详情
已知向量
a
=(sinx,cosx),
b
=(1,-2),且
a
b
,则tan2x=
 
分析:根据两向量垂直,得出向量坐标之间的关系,这样得到三角函数式,把三角函数式变形,算出角的正切值,再由二倍角公式得出要求的结论.解题过程只要认真,本题能得分.
解答:解:∵
a
b

∴sinx-2cosx=0,
∴tanx=2,
∴tan2x=
2tanx
1-tan2x
=-
4
3
点评:本题以向量为载体,实际上考查的是三角函数的知识,高考题中常出现向量和其他内容相结合的题目,本题只要熟记向量垂直的充要条件和正切的二倍角公式,就可以解决.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知向量
a
=(sinθ,-2),
b
=(cosθ,1)
(1)若
a
b
,求tanθ;
(2)当θ∈[-
π
12
π
3
]时,求f(θ)=
a
b
-2|
a
+
b
|2的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(sinθ,1),
b
=(1,-cosθ),θ∈(0,π)
(Ⅰ)若
a
b
,求θ;
(Ⅱ)若
a
b
=
1
5
,求tan(2θ+
π
4
)
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(sinθ,cosθ),
b
=(2,1),满足
a
b
,其中θ∈(0,
π
2
)

(I)求tanθ值;
(Ⅱ)求
2
sin(θ+
π
4
)(sinθ+2cosθ)
cos2θ
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(sinθ,cosθ)与
b
=(
3
,1),其中θ∈(0,
π
2

(1)若
a
b
,求sinθ和cosθ的值;
(2)若f(θ)=(
a
b
)
2
,求f(θ)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(sinθ,
3
cosθ),
b
=(1,1).
(1)若
a
b
,求tanθ的值;
(2)若|
a
|=|
b
|,且0<θ<π,求角θ的大小.

查看答案和解析>>

同步练习册答案