17£®ÔÚÖ±½Ç×ø±êϵxOyÖУ¬ÉäÏßlµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=t}\\{y=\sqrt{3}t}\end{array}\right.$£¨tΪ²ÎÊý£¬t¡Ý0£©ÔÚÒÔOΪ¼«µã£¬xÖáµÄÕý°ëÖáΪ¼«ÖáµÄ¼«×ø±êϵÖУ¬ÇúÏßC1µÄ¼«×ø±ê·½³ÌΪ¦Ñ=4sin¦È£®
£¨¢ñ£©ÒÑÖªMÊÇC1Éϵ͝µã£¬PµãÂú×ã$\overrightarrow{OP}$=2$\overrightarrow{OM}$£¬ÇóPµãµÄ¹ì¼£µÄ¼«×ø±ê·½³Ì£»
£¨¢ò£©¼ÇPµãµÄ¹ì¼£ÎªC2£¬ÉèÉäÏßlÓëÇúÏßC1ÓëC2·Ö±ð½»ÓÚµãA£¬B£¨ÒìÓÚA£¬B¼«µã£©£¬Çó|AB|£®

·ÖÎö £¨I£©ÉèP£¨¦Ñ£¬¦È£©£¬ÔòM£¨$\frac{¦Ñ}{2}$£¬¦È£©£¬½«Mµã¼«×ø±ê´úÈëÇúÏßC1¼«×ø±ê·½³ÌµÃ³öPµÄ¹ì¼£·½³Ì£®
£¨II£©Óɹ켣·½³ÌµÄ¶¨Òå¿ÉÖª|AB|=|OA|£¬¹ÊÖ»ÐèÇó³öl±»ÇúÏßC1Ëù½ØÏ߶γ¤|OA|¼´¿É£®Ê¹ÓòÎÊý¼¸ºÎÒâÒåÇó³ö|OA|£®

½â´ð ½â£º£¨I£©ÉèPµã¼«×ø±êΪ£¨¦Ñ£¬¦È£©£¬¡ß$\overrightarrow{OP}$=2$\overrightarrow{OM}$£¬¡àMµãµÄ¼«×ø±êΪ£¨$\frac{¦Ñ}{2}$£¬¦È£©£®
¡ßMÊÇC1Éϵ͝µã£¬¡à$\frac{¦Ñ}{2}$=4sin¦È£¬¼´¦Ñ=8sin¦È£®
¡àPµãµÄ¹ì¼£µÄ¼«×ø±ê·½³ÌÊǦÑ=8sin¦È£®
£¨II£©ÇúÏßC1µÄÖ±½Ç×ø±ê·½³ÌΪx2+£¨y-2£©2=4£®
½«$\left\{\begin{array}{l}{x=t}\\{y=\sqrt{3}t}\end{array}\right.$£¨tΪ²ÎÊý£¬t¡Ý0£©´úÈëx2+£¨y-2£©2=4µÃt2-$\sqrt{3}t$=0£¬
½âµÃt1=0£¬t2=$\sqrt{3}$£¬¡à|OA|=$\sqrt{3}$£¬
ÓÉ£¨I£©¿ÉÖª|OB|=2|OA|=2$\sqrt{3}$£®
¡à|AB|=|OA|=$\sqrt{3}$£®

µãÆÀ ±¾Ì⿼²éÁ˹켣·½³ÌµÄÇ󷨣¬¼«×ø±ê·½³ÌÓëÖ±½Ç×ø±ê·½³ÌµÄת»¯£¬²ÎÊý·½³ÌµÄÓ¦Óã¬ÊôÓÚ»ù´¡Ì⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®Èô¦Á+¦Â=$\frac{¦Ð}{4}$£¬ÇÒ¦Á£¬¦Â¾ù²»µÈÓÚk¦Ð+$\frac{¦Ð}{2}$£¨k¡ÊZ£©£¬ÇóÖ¤£º£¨tan¦Á+1£©£¨tan¦Â+1£©=2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®ÔÚ3µ½42Ö®¼ä²åÈë12¸öÊý£¬Ê¹µÃÕâ14¸öÊý×é³ÉÒ»¸öµÈ²îÊýÁУ¬ÇóÕâ¸öµÈ²îÊýÁеÄͨÏʽ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®ÉèÖ±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=\frac{3}{2}+\frac{1}{2}t}\\{y=-\frac{\sqrt{3}}{2}t}\end{array}\right.$£¨tΪ²ÎÊý£©£¬ÈôÒÔÖ±½Ç×ø±êϵxOyµÄOµãΪ¼«µã£¬OxÖáΪ¼«ÖᣬѡÔñÏàͬµÄ³¤¶Èµ¥Î»½¨Á¢¼«×ø±êϵ£¬µÃÇúÏßCµÄ¼«×ø±ê·½³ÌΪ¦Ñsin2¦È=6cos¦È
£¨¢ñ£©½«ÇúÏßCµÄ¼«×ø±ê·½³Ì»¯ÎªÖ±½Ç×ø±ê·½³Ì£¬²¢Ö¸³öÇúÏßÊÇʲôÇúÏߣ»
£¨¢ò£©ÈôÖ±ÏßlÓëÇúÏßC½»ÓÚA£¬BÁ½µã£¬Çó|AB|£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®ÔÚÖ±½Ç×ø±êϵÖУ¬ÇúÏßC1µÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=cos¦Á}\\{y=1+sin¦Á}\end{array}\right.$£¨¦ÁΪ²ÎÊý£©£¬MÊÇÇúÏßC1Éϵ͝µã£¬µãPÂú×ã$\overrightarrow{OP}=2\overrightarrow{OM}$£¬
£¨1£©ÇóµãPµÄ¹ì¼£·½³ÌC2£»
£¨2£©ÔÚÒÔOΪ¼«µã£¬XÖáµÄÕý°ëÖáΪ¼«ÖáµÄ¼«×ø±êϵÖУ¬ÉäÏß$¦È=\frac{¦Ð}{3}$ÓëÇúÏßC1£¬C2½»ÓÚ²»Í¬ÓÚÔ­µãµÄµãA£¬BÇó|AB|

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®ÒÑÖªÇúÏßC£º$\left\{\begin{array}{l}{x=4cos¦È}\\{y=3sin¦È}\end{array}\right.$£¨¦ÈΪ²ÎÊý£©£®
£¨1£©½«CµÄ·½³Ì»¯ÎªÆÕͨ·½³Ì£»
£¨2£©ÈôµãP£¨x£¬y£©ÊÇÇúÏßCÉϵ͝µã£¬Çó3x+4yµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®ÒÑÖªÇúÏßCµÄ²ÎÊý·½³ÌÊÇ$\left\{\begin{array}{l}{x=1+cos¦È}\\{y=2+sin¦È}\end{array}\right.$£¨¦ÈΪ²ÎÊý£©£¬Ö±ÏßlµÄ¼«×ø±ê·½³ÌΪ¦Ñsin£¨¦È+$\frac{¦Ð}{4}$£©=$\sqrt{2}$£®£¨ÆäÖÐ×ø±êϵÂú×ã¼«×ø±êÔ­µãÓëÖ±½Ç×ø±êϵԭµãÖØºÏ£¬¼«ÖáÓëÖ±½Ç×ø±êϵxÖáÕý°ëÖáÖØºÏ£¬µ¥Î»³¤¶ÈÏàͬ£®£©
£¨¢ñ£©½«ÇúÏßCµÄ²ÎÊý·½³Ì»¯ÎªÆÕͨ·½³Ì£¬°ÑÖ±ÏßlµÄ¼«×ø±ê·½³Ì»¯ÎªÖ±½Ç×ø±ê·½³Ì£»
£¨¢ò£©ÉèMÊÇÖ±ÏßlÓëxÖáµÄ½»µã£¬NÊÇÇúÏßCÉÏÒ»¶¯µã£¬Çó|MN|µÄ×î´óÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

6£®Ê¹º¯Êýf£¨x£©=|x|Óëg£¨x£©=-x2+2x¶¼ÊÇÔöº¯ÊýµÄÇø¼ä¿ÉÒÔÊÇ£¨¡¡¡¡£©
A£®[0£¬1]B£®£¨-¡Þ£¬1]C£®£¨-¡Þ£¬0]D£®[0£¬2]

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®ÒÑÖªÍÖÔ²C£º$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1£¨a£¾b£¾0£©µÄÀëÐÄÂÊΪ$\frac{{\sqrt{3}}}{2}$£¬ÇÒ¾­¹ýµãA£¨0£¬-1£©£®
£¨¢ñ£©ÇóÍÖÔ²CµÄ±ê×¼·½³Ì£»
£¨¢ò£©Èç¹û¹ýµã$B£¨0£¬\frac{3}{5}£©$µÄÖ±ÏßÓëÍÖÔ²C½»ÓÚM£¬NÁ½µã£¨M£¬NµãÓëAµã²»Öغϣ©£¬µ±|AM|=|AN|ʱ£¬ÇóÖ±ÏßMNµÄ·½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸