精英家教网 > 高中数学 > 题目详情
如图,在直角梯形中,
,椭圆以为焦点且经过点
(Ⅰ)建立适当的直角坐标系,求椭圆的方程;
(Ⅱ)以该椭圆的长轴为直径作圆,判断点C与该圆的位置关系。

(Ⅰ)(Ⅱ)点C在圆内
(Ⅰ)以所在直线为轴,的垂直平分线为轴建立直角坐标系…1分

…3分
设椭圆方程为……4分
 解得………8分
∴所求椭圆方程为    ……9分
(2)点C在圆内 ………12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知之间满足
(1)方程表示的曲线经过一点,求b的值
(2)动点(x,y)在曲线(b>0)上变化,求x2+2y的最大值;
(3)由能否确定一个函数关系式,如能,求解析式;如不能,再加什么条件就可使之间建立函数关系,并求出解析式。

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知一个圆的圆心为坐标原点,半径为2,从这个圆上任意一点P向x轴作垂线段PP′,则线段PP′的中点M的轨迹方程为________________________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

椭圆25x2+9y2=225的长轴长、短轴长、离心率依次是(    )
A.5,3,0.8B.10,6,0.8
C.5,3,0.6D.10,6,0.6

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的长、短轴端点分别为A、B,从此椭圆上一点M向x轴作垂线,恰好通过椭圆的左焦点,向量是共线向量。
(1)求椭圆的离心率e;
(2)设Q是椭圆上任意一点, 分别是左、右焦点,求∠ 的取值范围;

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设A(x1,y1),B(x2,y2)是椭圆=1(a>b>0)上的两点,已知向量m() ,n(),若m·n=0且椭圆的离心率e=,短轴长为2,O为坐标原点:
(Ⅰ)求椭圆的方程:
(Ⅱ)若直线AB过椭圆的焦点F(0,c),(为半焦距),求直线AB的斜k率的值:
(Ⅲ)试问:△AOB的面积是否为定值?

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)椭圆C的中心在坐标原点,焦点在x轴上,右焦点F的坐标为(2,0),右准线方程为 (I)求椭圆C的方程;  (II)过点F作斜率为k的直线l,与椭圆C交于A、B两点,若,求k的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

椭圆的右焦点为F,P1,P2,…,P24为24个依逆时针顺序排列在椭圆上的点,其中P1是椭圆的右顶点,并且∠P1FP2=∠P2FP3=∠P3FP4=…=∠P24FP1.若这24个点到右准线的距离的倒数和为S,求S2的值. 

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设点A(-2,),椭圆+ =1的右焦点为F,点P在椭圆上移动.当|PA|+2|PF|取最小值时,P点的坐标是多少?

查看答案和解析>>

同步练习册答案