精英家教网 > 高中数学 > 题目详情
已知之间满足
(1)方程表示的曲线经过一点,求b的值
(2)动点(x,y)在曲线(b>0)上变化,求x2+2y的最大值;
(3)由能否确定一个函数关系式,如能,求解析式;如不能,再加什么条件就可使之间建立函数关系,并求出解析式。
(1) 1
(2)
(3)同解析
(1)                     
(2)根据                
          
                                                            
(2)不能                                               
如再加条件就可使之间建立函数关系           
解析式
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,过点B(0,-b)作椭圆=1(a>b>0)的弦,求这些弦长的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

以椭圆的右焦点F2为圆心作一个圆,使此圆过椭圆的中心,交椭圆于点M、N,若直线MF1(F1为椭圆左焦点)是圆F2的切线,则椭圆的离心率为(    )
A.2-B.-1C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

方程=1表示焦点在y轴上的椭圆,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的中心在坐标原点,以坐标轴为对称轴,且经过两点P1(,1)、P2(-,-),求椭圆方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在直角梯形中,
,椭圆以为焦点且经过点
(Ⅰ)建立适当的直角坐标系,求椭圆的方程;
(Ⅱ)以该椭圆的长轴为直径作圆,判断点C与该圆的位置关系。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆=1上任意一点P,由P向x轴作垂线段PQ,垂足为Q,点M在线段PQ上,且=2,点M的轨迹为曲线E.
(1)求曲线E的方程;
(2)若过定点F(0,2)的直线l交曲线E于不同的两点G,H(点G在点F,H之间),且满足=2,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

中心在原点,焦点在x轴上,若长轴长为18,且两个焦点恰好将长轴三等分,则
此椭圆的方程是(    )
A.+="1"B.+=1
C.+="1"D.+=1

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知椭圆+="1" (a>b>0)的左焦点到右准线的距离为,中心到准线的距离为,则椭圆的方程为__________.

查看答案和解析>>

同步练习册答案