精英家教网 > 高中数学 > 题目详情

【题目】已知函数,且直线是函数的一条切线.

(1)求的值;

(2)对任意的,都存在,使得,求的取值范围;

(3)已知方程有两个根,若,求证: .

【答案】(1) ;(2) ;(3) 详见解析.

【解析】试题分析:(1)对函数求导, ,设直线与函数相切与点,根据导数的几何意义可得, ,解得,求出;(2)对任意的 ,都存在,使得,只需要的值域是值域的子集,利用导数的方法分别求的值域,即可求出的取值范围;(3)根据题意得,两式相减得, ,所以,令,则,则,令,对求导,判断的单调,证明.

试题解析:(1)设直线相切于点,依题意得,解得,所以,经检验: 符合题意.

(2) 由(1)得,所以,当 时, ,所以上单调递减,所以当 时, ,当时, ,所以上单调递增,所以当时, ,依题意得 ,所以,解得.

(3) 依题意得,两式相减得,所以,方程可转化为,即,令,则,则,令,因为,所以上单调递增,所以,所以,即.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数

1讨论的单调性

2若对任意的恒有成立求实数的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在以为顶点的五面体中,OAB的中点,

平面

1)在图中过点O作平面,使得∥平面并说明理由;

(2)求直线DE与平面CBE所成角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是函数的一个极值点.

(1)求

(2)求函数的单调区间;

(3)若直线与函数的图象有3个交点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数y=f(x)是偶函数,对于x∈R都有f(x+6)=f(x)+f(3)成立.当x1,x2∈[0,3],且x1≠x2时,都有 >0,给出下列命题:

① f(3)=0;

② 直线x=-6是函数y=f(x)的图象的一条对称轴;

③ 函数y=f(x)在[-9,-6]上为单调递减函数;

④ 函数y=f(x)在[-9,9]上有4个零点.

其中正确的命题是____________.(填序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1求函数的单调递减区间;

2若关于的方程在区间上有两个不等的根,求实数的取值范围;

3若存在,当时,恒有,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{}的前n项和 (n为正整数)。

1,求证数列{}是等差数列,并求数列{}的通项公式;

(2)试比较的大小,并予以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在四棱柱,侧棱底面 ,且 ,侧棱.

(1)若上一点,试确定点的位置,使平面

(2)在(1)的条件下,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,矩形垂直于正方形垂直于平面.且

(1)证明:面

(2)求二面角的余弦值.

查看答案和解析>>

同步练习册答案