分析 (1)求出f′(x),令f′(x)=0,解出极值点,得出极值;
(2)令g(a)等于f(x)的极大值与a的差,使用导数证明f(x)的极大值大于a即可.
解答 解:(1)f′(x)=$\frac{1-a-lnx}{{x}^{2}}$,
令f′(x)=0,即1-a-lnx=0,解得x=e1-a.
当0<x<e1-a时,f′(x)>0,当x>e1-a时,f′(x)<0.
∴当x=e1-a时,f(x)取得极大值f(e1-a)=$\frac{1}{{e}^{1-a}}$.
(2)令g(a)=$\frac{1}{{e}^{1-a}}$-a,则g′(a)=$\frac{1}{{e}^{1-a}}-1$.
∵a>1,∴0<e1-a<1,∴g′(a)=$\frac{1}{{e}^{1-a}}-1$>0.
∴g(a)在(1,+∞)上单调递增,
∴g(a)>g(1)=0,
∴当a>1时,g(a)>0,即$\frac{1}{{e}^{1-a}}$>a.
∴当a>1时,f(x)的极大值f(e1-a)=$\frac{1}{{e}^{1-a}}$>a.
∴当a>1时,存在x0∈(0,+∞),使得f(x0)>a.
点评 本题考查了导数与函数的单调性,极值的关系,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{3\sqrt{5}}{5}$ | B. | $\sqrt{2}$ | C. | $\frac{3\sqrt{2}}{2}$ | D. | $\sqrt{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com