精英家教网 > 高中数学 > 题目详情
10.在等腰梯形ABCD中,已知AB∥CD,AB=4,BC=2,∠ABC=60°,动点E和F分别在线段BC和CD上,且$\overrightarrow{BE}$=λ$\overrightarrow{BC}$,$\overrightarrow{DF}$=$\frac{1}{9λ}$$\overrightarrow{DC}$,则当λ=$\frac{2}{3}$时,$\overrightarrow{AE}$•$\overrightarrow{AF}$有最小值.

分析 由已知求得AB=BC=CD=2,再由$\overrightarrow{AE}$•$\overrightarrow{AF}$=($\overrightarrow{AB}+\overrightarrow{BE}$)•($\overrightarrow{AD}+\overrightarrow{DF}$),把$\overrightarrow{BE}$=λ$\overrightarrow{BC}$,$\overrightarrow{DF}$=$\frac{1}{9λ}$$\overrightarrow{DC}$代入,展开后代入数量积公式求得答案.

解答 解:在等腰梯形ABCD中,∵AB∥CD,AB=4,BC=2,∠ABC=60°,
∴AB=BC=CD=2,
∴$\overrightarrow{AE}$•$\overrightarrow{AF}$=($\overrightarrow{AB}+\overrightarrow{BE}$)•($\overrightarrow{AD}+\overrightarrow{DF}$)=($\overrightarrow{AB}+λ\overrightarrow{BC}$)•($\overrightarrow{AD}+\frac{1}{9λ}\overrightarrow{DC}$)
=$\overrightarrow{AB}•\overrightarrow{AD}+λ\overrightarrow{BC}•\overrightarrow{AD}$$+\frac{1}{9λ}\overrightarrow{AB}•\overrightarrow{DC}+\frac{1}{9}\overrightarrow{BC}•\overrightarrow{DC}$
=$4×2×cos60°+λ×2×2×cos60°+\frac{1}{9λ}$×4×2$+\frac{1}{9}×2×2×cos120°$
=$\frac{34}{9}+2λ+\frac{8}{9λ}$$≥\frac{34}{9}+2\sqrt{2λ•\frac{8}{9λ}}=\frac{34}{9}+\frac{8}{3}=\frac{58}{9}$.
当且仅当2$λ=\frac{8}{9λ}$,即$λ=\frac{2}{3}$时上式等号成立.
故答案为:$\frac{2}{3}$.

点评 本题考查平面向量的数量积运算,考查数学转化思想方法,训练了利用基本不等式求最值,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.已知3tan$\frac{α}{2}$+tan2$\frac{α}{2}$=1,sinβ=3sin(2α+β),则tan(α+β)=-$\frac{4}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知数列{an}的前n项和Sn=2n2-3,求:
(1)第二项a2
(2)通项公式an

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.(ax+2)n展开式中所有项的二项式系数和为32,含x2项的系数为320,则a=±2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.(1)已知tanα=$\frac{1}{3}$,求2sin2α+3sinαcosα+4cos2α的值;
(2)已知a>0,ω>0,函数f(x)=asinωx+$\sqrt{3}$cosωx的最小正周期为π,对于任意的x∈R,f(x)≤f($\frac{π}{12}$)恒成立,求f(x)的零点.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.阅读如图所示的程序框图,运行相应的程序,则输出S的值为4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.某几何体的三视图如图所示(单位:cm),则该几何体的表面积是72cm2,体积是32cm3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=$\frac{a+lnx}{x}$(a∈R).
(1)求函数f(x)的极值;
(2)若a>1,求证:存在x0∈(0,+∞),使得f(x0)>a.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在平面直角坐标系中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,已知点A的极坐标为($\sqrt{2}$,$\frac{5π}{4}$),直线1的极坐标方程为ρcos(θ-$\frac{π}{4}$)=a,且点A在直线1上
(1)求a的值及直线l的直角坐标方程;
(2)若曲线C的极坐标方程为ρ+sinθ=0,试判断直线l与曲线C的位置关系.

查看答案和解析>>

同步练习册答案