精英家教网 > 高中数学 > 题目详情
5.(1)已知tanα=$\frac{1}{3}$,求2sin2α+3sinαcosα+4cos2α的值;
(2)已知a>0,ω>0,函数f(x)=asinωx+$\sqrt{3}$cosωx的最小正周期为π,对于任意的x∈R,f(x)≤f($\frac{π}{12}$)恒成立,求f(x)的零点.

分析 (1)把2sin2α+3sinαcosα+4cos2α的分母“1”化为sin2α+cos2α,然后分子分母同时除以cos2α,转化为含有正切的代数式求解;
(2)利用辅助角公式化积,由周期求得ω,再由对于任意的x∈R,f(x)≤f($\frac{π}{12}$)恒成立可得函数的最大值为f($\frac{π}{12}$),求出a值,得到函数解析式,则f(x)的零点可求.

解答 解:(1)∵tanα=$\frac{1}{3}$,
∴$2{sin^2}α+3sinαcosα+4{cos^2}α=\frac{{2{{sin}^2}α+3sinαcosα+4{{cos}^2}α}}{{{{sin}^2}α+{{cos}^2}α}}$
=$\frac{{2{{tan}^2}α+3tanα+4}}{{1+{{tan}^2}α}}$=$\frac{2×(\frac{1}{3})^{2}+3×\frac{1}{3}+4}{1+(\frac{1}{3})^{2}}$=$\frac{47}{10}$;
(2)f(x)=asinωx+$\sqrt{3}$cosωx=$\sqrt{{a}^{2}+3}$sin(ωx+φ),
由f(x)的最小正周期为π,得ω=2,
即$f(x)=asin2x+\sqrt{3}cos2x$=$\sqrt{{a}^{2}+3}sin$(2x+φ),
由题意知f(x)最大值为$\sqrt{{a^2}+3}=f(\frac{π}{12})$,
即$\sqrt{{a^2}+3}=\frac{a}{2}+\frac{3}{2}$,解得a=1,
∴$f(x)=sin2x+\sqrt{3}cos2x=2sin(2x+\frac{π}{3})$.
由f(x)=0,即$sin(2x+\frac{π}{3})=0$,得$2x+\frac{π}{3}=kπ$,
即$x=\frac{kπ}{2}-\frac{π}{6}(k∈Z)$,
∴f(x)的零点为x=$\frac{kπ}{2}-\frac{π}{6}$(k∈Z).

点评 本题考查三角恒等变换中的应用,考查了y=Asin(ωx+φ)型函数的图象和性质,训练了函数零点的求法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知cos(x+$\frac{π}{4}$)=$\frac{3}{5}$,$\frac{17π}{12}$<x<$\frac{7π}{4}$.
(1)求sinx的值;
(2)求$\frac{1+sin2x-cos2x}{1+sin2x+cos2x}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若不等式ax>lnx对x∈(0,+∞)恒成立,则(  )
A.a>1-eB.a>0C.a<$\frac{1}{e}$D.a>$\frac{1}{e}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知数列{an}是公差为d的等差数列,且a1+a3+a5=105,a2+a4+a6=99,则d=-2,当数列{an}的前n项和Sn取得最大值时,n=20.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.有A、B、C、D、E五列火车停在某车站并行的5条火车轨道上.如果快车A不能停在第3道上,慢车B不能停在第1道上,那么这五列火车的停车方法共有78种(用数字作答).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.在等腰梯形ABCD中,已知AB∥CD,AB=4,BC=2,∠ABC=60°,动点E和F分别在线段BC和CD上,且$\overrightarrow{BE}$=λ$\overrightarrow{BC}$,$\overrightarrow{DF}$=$\frac{1}{9λ}$$\overrightarrow{DC}$,则当λ=$\frac{2}{3}$时,$\overrightarrow{AE}$•$\overrightarrow{AF}$有最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知函数f(x)=sin(ωx+φ)(ω>0,|φ|≤$\frac{π}{2}$),x=-$\frac{π}{4}$为f(x)的零点,x=$\frac{π}{4}$为y=f(x)图象的对称轴,且f(x)在($\frac{π}{18}$,$\frac{5π}{36}$)单调,则ω的最大值为9.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知数列{an}中,an=-2n2+λn(n∈N*),若该数列为单调递减数列,则λ的取值范围是(-∞,6).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知:a,b,c,d是公比为3的等比数列,则$\frac{3a+b}{3c+d}$=$\frac{1}{9}$.

查看答案和解析>>

同步练习册答案