精英家教网 > 高中数学 > 题目详情
16.若不等式ax>lnx对x∈(0,+∞)恒成立,则(  )
A.a>1-eB.a>0C.a<$\frac{1}{e}$D.a>$\frac{1}{e}$

分析 f′(x)=a-$\frac{1}{x}$,(x>0),由f′(x)=a-$\frac{1}{x}$=0,得a=$\frac{1}{x}$>0.从而导出f(x)=ax-lnx在a=$\frac{1}{x}$,即x=$\frac{1}{a}$时,取最小值:f(x)min=f($\frac{1}{a}$)=1-lna>0,所以0<lna<1,由此能求出实数a的取值范围.

解答 解:令f(x)=ax-lnx,(x>0),
∵f′(x)=a-$\frac{1}{x}$,(x>0)
∴由f′(x)=a-$\frac{1}{x}$=0,得a=$\frac{1}{x}$>0
∴由f′(x)=a-$\frac{1}{x}$>0,得a>$\frac{1}{x}$,
x>$\frac{1}{a}$时f(x)=ax-lnx是增函数,增区间是($\frac{1}{a}$,+∞).
∴由f′(x)=a-$\frac{1}{x}$<0,得a<$\frac{1}{x}$,
∴x<$\frac{1}{a}$时f(x)=ax-lnx是减函数,减区间是(0,$\frac{1}{a}$);
∴f(x)=ax-lnx在x=$\frac{1}{a}$时,取最小值:
f(x)min=f($\frac{1}{a}$)=1-ln($\frac{1}{a}$)>0,
∴0<ln($\frac{1}{a}$)<1,
∴e>$\frac{1}{a}$.
∴实数a的取值范围是($\frac{1}{e}$,+∞).
故选:D.

点评 本题考查实数a的取值范围,是中档题.解题时要认真审题,仔细解答,注意导数的性质的灵活运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.已知{an}是等比数列,前n项和为Sn(n∈N*),且$\frac{1}{{a}_{1}}$-$\frac{1}{{a}_{2}}$=$\frac{2}{{a}_{3}}$,S6=63.
(1)求{an}的通项公式;
(2)若对任意的n∈N*,bn是log2an和log2an+1的等差中项,求数列{(-1)nb${\;}_{n}^{2}$}的前2n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.关于x的方程x+lgx=3,x+10x=3的两个根分别为α,β,则α+β的值为3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知函数f(x)=$\left\{\begin{array}{l}{-{x}^{2}+4x-3,x≤1}\\{lnx,x>1}\end{array}\right.$,若|f(x)|+a≥ax,则a的取值范围是(  )
A.[-2,0]B.[-2,1]C.(-∞,-2]D.(-∞,0]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若$\frac{1}{a}$<$\frac{1}{b}$<0,则下列不等式:①a+b<ab;②|a|>|b|;③$\frac{b}{a}$+$\frac{a}{b}$>2;④b>a.以正确的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知数列{an}的前n项和Sn=2n2-3,求:
(1)第二项a2
(2)通项公式an

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.定义在(0,+∞)上的函数f(x)=a(x+$\frac{1}{x}$)-|x-$\frac{1}{x}}$|(a∈R).
(Ⅰ)当a=$\frac{1}{2}$时,求f(x)的单调区间;
(Ⅱ)若f(x)≥$\frac{1}{2}$x对任意的x>0恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.(1)已知tanα=$\frac{1}{3}$,求2sin2α+3sinαcosα+4cos2α的值;
(2)已知a>0,ω>0,函数f(x)=asinωx+$\sqrt{3}$cosωx的最小正周期为π,对于任意的x∈R,f(x)≤f($\frac{π}{12}$)恒成立,求f(x)的零点.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.某几何体的三视图如图所示(单位:cm),则该几何体的表面积是80cm2,体积是40cm3

查看答案和解析>>

同步练习册答案