精英家教网 > 高中数学 > 题目详情
14.已知3tan$\frac{α}{2}$+tan2$\frac{α}{2}$=1,sinβ=3sin(2α+β),则tan(α+β)=-$\frac{4}{3}$.

分析 3tan$\frac{α}{2}$+tan2$\frac{α}{2}$=1,利用倍角公式可得tanα=$\frac{2tan\frac{α}{2}}{1-ta{n}^{2}\frac{α}{2}}$.由sinβ=3sin(2α+β),变形为:sin[(α+β)-α]=3sin[(α+β)+α],展开即可得出.

解答 解:∵3tan$\frac{α}{2}$+tan2$\frac{α}{2}$=1,∴tanα=$\frac{2tan\frac{α}{2}}{1-ta{n}^{2}\frac{α}{2}}$=$\frac{2}{3}$.
∵sinβ=3sin(2α+β),
∴sin[(α+β)-α]=3sin[(α+β)+α],
展开:sin(α+β)cosα-cos(α+β)sinα=3sin(α+β)cosα+3cos(α+β)sinα,
化为:tan(α+β)+2tanα=0,
则tan(α+β)=-2tanα=-$\frac{4}{3}$.
故答案为:-$\frac{4}{3}$.

点评 本题考查了倍角公式、和差关系,考查了变形能力、推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.已知函数f(x)=2cos(ωx-$\frac{π}{6}$)与函数g(x)=3sin(2x+φ)(0<φ<$\frac{π}{2}$)图象的对称中心完全相同,则函数f(x)图象的一条对称轴是(  )
A.x=$\frac{3}{4}$B.x=$\frac{π}{2}$C.x=$\frac{π}{4}$D.x=$\frac{π}{12}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知抛物线C:y2=4x上一点M(4,-4),点A,B是抛物线C上的两动点,且$\overrightarrow{MA}$$•\overrightarrow{MB}$=0,则点M到直线AB的距离的最大值是4$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知等比数列{an}的首项为3,且对任意正整数n都有$\frac{{a}_{2n}}{{a}_{n}}$=$\frac{{3}^{4n-1}}{{3}^{2n-1}}$,则数列{an}的公比=9;a4=2187;数列{an}的前n项和为Sn=$\frac{3}{8}$×(9n-1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知cos(x+$\frac{π}{4}$)=$\frac{3}{5}$,$\frac{17π}{12}$<x<$\frac{7π}{4}$.
(1)求sinx的值;
(2)求$\frac{1+sin2x-cos2x}{1+sin2x+cos2x}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知随机变量X~B(n,p),则E(X)等于(  )
A.pB.npC.p(1-p)D.np(1-p)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知△ABC的顶点分别为A(1,y),B(-3,8),C(-2,3),AB边上的中点为M,直线AM的斜率为3,求y的值及线段AM的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在△ABC中,角A,B,C为三个内角,已知A=$\frac{π}{3}$,cosB=$\frac{11}{14}$.
(Ⅰ) 求cosC的值;
(Ⅱ) 若BC=7,D为AB的中点,求CD的长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.在等腰梯形ABCD中,已知AB∥CD,AB=4,BC=2,∠ABC=60°,动点E和F分别在线段BC和CD上,且$\overrightarrow{BE}$=λ$\overrightarrow{BC}$,$\overrightarrow{DF}$=$\frac{1}{9λ}$$\overrightarrow{DC}$,则当λ=$\frac{2}{3}$时,$\overrightarrow{AE}$•$\overrightarrow{AF}$有最小值.

查看答案和解析>>

同步练习册答案