分析 (I)由B的余弦值可以求得其正弦值,再利用两角和与差的余弦函数公式化简,整理求出cosC的值即可;
(Ⅱ)由cosC的值,求出sinC的值,利用正弦定理即可求得AB的长,再在三角形BCD中运用余弦定理即可求得CD的值.
解答 (Ⅰ) 解:因为cosB=$\frac{11}{14}$,B∈(0,π),
所以sinB=$\sqrt{1-co{s}^{2}B}$=$\sqrt{1-\frac{121}{196}}$=$\frac{5\sqrt{3}}{14}$.
所以cosC=cos($\frac{2}{3}π$-B)=cos$\frac{2}{3}π$cosB+sin$\frac{2}{3}π$sinB=-$\frac{1}{2}$×$\frac{11}{14}+\frac{\sqrt{3}}{2}×\frac{5\sqrt{3}}{14}$=$\frac{1}{7}$.
(Ⅱ) 解:由(Ⅰ)可得sinC=$\sqrt{1-co{{s}^{2}C}^{\;}}$=$\sqrt{1-\frac{1}{49}}$=$\frac{4\sqrt{3}}{7}$.
由正弦定理得$\frac{BC}{sinA}=\frac{AB}{sinC}$,即$\frac{7}{\frac{\sqrt{3}}{2}}=\frac{AB}{\frac{4\sqrt{3}}{7}}$,解得AB=8.
在△BCD中,BD=4,由余弦定理得CD2=42+72-2×4×7×$\frac{11}{14}$=21,
所以CD=$\sqrt{21}$.
点评 此题考查了正弦定理,两角和与差的正弦、余弦函数公式,以及同角三角函数间的基本关系,熟练掌握正弦定理是解本题的关键.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 3 | B. | e3 | C. | 4 | D. | e4 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [-2,0] | B. | [-2,1] | C. | (-∞,-2] | D. | (-∞,0] |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com