精英家教网 > 高中数学 > 题目详情
4.给出下列四个结论:
①若命题p:?x0∈R,x02+x0+1<0,则¬p:?x∈R,x2+x+1≥0;
②“(x-3)(x-4)=0”是“x-3=0”的充分而不必要条件;
③命题“若m>0,则方程x2+x-m=0有实数根”的逆否命题为:“若方程x2+x-m=0没有实数根,则m≤0”;
④函数f(x)=cos(2x-$\frac{π}{6}$)的图象关于直线x=$\frac{π}{3}$对称.
其中正确结论的个数为(  )
A.1B.2C.3D.4

分析 写出原命题的否定,可判断①;根据充要条件的定义,可判断②;写出原命题的逆否但,可判断③;分析函数的对称性,可判断④.

解答 解:命题p:?x0∈R,x02+x0+1<0,则¬p:?x∈R,x2+x+1≥0,故①正确;
“(x-3)(x-4)=0”?“x=3或x=4”,“x-3=0”?“x=3”
“(x-3)(x-4)=0”是“x-3=0”故的必要不充分条件,故②错误;
命题“若m>0,则方程x2+x-m=0有实数根”的逆否命题为:“若方程x2+x-m=0没有实数根,则m≤0”,故③正确;
当x=$\frac{π}{3}$时,cos(2x-$\frac{π}{6}$)=0,故函数f(x)=cos(2x-$\frac{π}{6}$)的图象关于($\frac{π}{3}$,0)点对称,故④错误.
故选:B.

点评 本题以命题的真假判断与应用为载体,考查了命题的否定,充要条件,四种命题,三角函数的图象和性质,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.判断下列函数的奇偶性,并说明理由.
(1)f(x)=x2-|x|+1,x∈[-1,4];
(2)f(x)=(x-1)$\sqrt{\frac{1+x}{1-x}}$,x∈(-1,1);
(3)f(x)=$\frac{1}{{a}^{x}-1}$+$\frac{1}{2}$(a>0,a≠1);
(4)f(x)=$\left\{\begin{array}{l}{x(1-x),(x<0)}\\{x(1+x),(x>0)}\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知f(x)=$\left\{{\begin{array}{l}{\frac{1}{{f({x+1})}}-1,-1<x<0}\\{x,0≤x<1}\end{array}}$,若方程f(x)-4ax=a(a≠0)有唯一解,则实数a的取值范围是(  )
A.$[{\frac{1}{3},+∞})$B.$[{\frac{1}{5},+∞})$C.$\left\{1\right\}∪[{\frac{1}{3},+∞})$D.$\left\{{-1}\right\}∪[{\frac{1}{5},+∞})$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.若点G为△ABC的重心,且AG⊥BG,AB=2,则$\overrightarrow{CA}$•$\overrightarrow{CB}$的值为8.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.奇函数f(x)的定义域为(-1,1),且在(-1,1)上是增函数,若f(1-a)+f(1-2a)<0,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知函数y=f(x)的定义域是(-∞,1),则y=f(x-1)+$\frac{\sqrt{2-x}}{2{x}^{2}-3x-2}$的定义域是(  )
A.(-∞,-$\frac{1}{2}$)∪(-$\frac{1}{2}$,2)B.(-∞,-$\frac{1}{2}$)∪(-$\frac{1}{2}$,1)C.(-∞,1)D.(-∞,2)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知曲线S:y=x3+4 及点A(1,5),则过点A 的曲线S 的切线方程为3x-y-2=0或3x-4y+17=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知向量$\overrightarrow{a}$=(1,sinx),$\overrightarrow{b}$=(cos(2x+$\frac{π}{3}$),sinx),函数f(x)=$\vec a$•$\vec b$-$\frac{1}{2}$cos2x.
(1)求函数f(x)的解析式及最小正周期;
(2)当x∈[0,$\frac{π}{3}$]时,求函数f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知全集S=R,A⊆S,B⊆S,若命题p:$\sqrt{2}$∈(A∪B),则命题“¬p”是(  )
A.$\sqrt{2}$∉AB.$\sqrt{2}$∈∁sBC.$\sqrt{2}$∉A∩BD.$\sqrt{2}$∈(∁sA)∩(∁sB)

查看答案和解析>>

同步练习册答案