精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆C:的左右顶点为A、B,右焦点为F,一条准线方程是,短轴一端点与两焦点构成等边三角形,点P、Q为椭圆C上异于A、B的两点,点RPQ的中点

求椭圆C的标准方程;

直线PB交直线于点M,记直线PA的斜率为,直线FM的斜率为,求证:为定值;

,求直线AR的斜率的取值范围.

【答案】(1)(2)见解析(3)

【解析】

(1)由准线方程得,由等边三角形得,联立解得,结合求得,得椭圆标准方程;

(2)设直线PB方程为,与椭圆方程联立可解得交点P的坐标,同时求得点M,F的坐标,计算即得;

(3),可得,即AP的方程为,代入椭圆方程求得P点坐标,把换成,可得Q点坐标,计算直线斜率表示为的函数,

可结合换元法和基本不等式求得此函数的函数值的范围.

椭圆的一条准线方程是,可得

短轴一端点与两焦点构成等边三角形,可得

解得

即有椭圆方程为

证明:由

设直线PB的方程为

联立椭圆方程

可得

解得

即有

为定值

,可得,即

AP的方程为,代入椭圆方程

可得

解得

即有

t换为可得

R的坐标为

即有直线AR的斜率

可令,则

时,

当且仅当时上式取得等号,

同样当时,

时,

AR的斜率范围为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】(本题14分)下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量(吨)与相应的生产能耗(吨)标准煤的几组对照数据:


3

4

5

6


2.5

3

4

4.5

1)请画出上表数据的散点图;并指出xy 是否线性相关;

2)请根据上表提供的数据,用最小二乘法求出关于的线性回归方程

3)已知该厂技术改造前100吨甲产品能耗为90吨标准煤,试根据(2)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技术改造前降低多少吨标准煤?

(参考:用最小二乘法求线性回归方程系数公式

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了检验两种不同的课堂教学模式对学生的成绩是否有影响,现从高二年级的甲(实行的问题——探究式)、乙(实行的自学——指导式)两个班中每班任意抽取20名学生进行测试,他们的成绩(总分150分)分布茎叶图如图所示(以十位百位为茎,个位为叶):

1)若从参与测试的学生试卷中挑选2份卷面分数为90~100分的试着进行卷面分析,求抽取的2份试卷恰好每班1份的概率?

2)记成绩在120分以上(包括120分)为优秀,其他的成绩为一般,请完成下面列联表,并分析是否有足够的把握(90%以上)认为这两种课堂教学模式对学生的成绩有影响?

成绩

班级

优秀人数

一般人数

总计

甲班

乙班

总计

附:

050

040

025

015

010

005

0025

0010

0005

0001

0455

0708

1323

2072

2706

3841

5024

6635

7879

10828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】里氏震级M的计算公式为:M=lgA﹣lgA0,其中A是测震仪记录的地震曲线的最大振幅,是相应的标准地震的振幅,假设在一次地震中,测震仪记录的最大振幅是1000,此时标准地震的振幅A00.001,则此次地震的震级为 级;9级地震的最大的振幅是5级地震最大振幅的 倍.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着网络的发展,网上购物越来越受到人们的喜爱,各大购物网站为增加收入,促销策略越来越多样化,促销费用也不断增加,下表是某购物网站20181-8月促销费用(万元)和产品销量(万件)的具体数据:

月份

1

2

3

4

5

6

7

8

促销费用

2

3

6

10

13

21

15

18

产品销量

1

1

2

3

3.5

5

4

4.5

1)根据数据绘制的散点图能够看出可用线性回归模型的关系,请用相关系数加以说明(系数精确到0.001);

2)建立关于的线性回归方程(系数精确到0.001);如果该公司计划在9月份实现产品销量超6万件,预测至少需要投入费用多少万元(结果精确到0.01).

参考数据:,其中分别为第个月的促销费用和产品销量,

参考公式:(1)样本相关系数

2)对于一组数据,其回归方程的斜率和截距的最小二乘估计分别为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正多面体共有5种,即正四面体、正六面体、正八面体、正十二面体和正二十面体.任一个正多面体都有内切球和外接球,若一个半径为1的球既是一个正四面体的内切球,又是一个正六面体的外接球,则这两个多面体的顶点之间的最短距离为(

A.1B.1C.21D.2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列各项均为正数,Sn是数列的前n项的和,对任意的,都有.数列各项都是正整数,,且数列是等比数列.

(1) 证明:数列是等差数列;

(2) 求数列的通项公式

(3)求满足的最小正整数n.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的图象是由函数的图象经如下变换得到:先将函数图象上所有点的横坐标缩短到原来的倍(纵坐标不变),再将所得到的图象向左平移个单位长度.

1)写出函数的解析式和其图象的对称中心坐标.

2)已知关于的方程上有两个不同的解,求实数的取值范围和的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)求函数的单调区间;

(2)若a>0,设是函数图象上的任意两点,记直线AB的斜率为k,求证:.

查看答案和解析>>

同步练习册答案