精英家教网 > 高中数学 > 题目详情

【题目】如图,在三棱柱ABC﹣A1B1C1中,底面为正三角形,侧棱垂直底面,AB=4,AA1=6,若E,F分别是棱BB1 , CC1上的点,且BE=B1E,C1F= CC1 , 则异面直线A1E与AF所成角的余弦值为(
A.
B.
C.
D.

【答案】D
【解析】解以C为原点,CA为x轴,在平面ABC中过作AC的垂线为y轴,CC1为z轴,建立空间直角坐标系,
∵在三棱柱ABC﹣A1B1C1中,底面为正三角形,侧棱垂直底面,AB=4,AA1=6,
E,F分别是棱BB1 , CC1上的点,且BE=B1E,C1F= CC1
∴A1(4,0,6),E(2,2 ,3),F(0,0,4),A(4,0,0),
=(﹣2,2 ,﹣3), =(﹣4,0,4),
设异面直线A1E与AF所成角所成角为θ,
则cosθ= = =
∴异面直线A1E与AF所成角的余弦值为
故选:D.
以C为原点,CA为x轴,在平面ABC中过作AC的垂线为y轴,CC1为z轴,建立空间直角坐标系,利用向量法能求出异面直线A1E与AF所成角的余弦值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为了解某市民众对某项公共政策的态度,在该市随机抽取了名市民进行调查,做出了他们的月收入(单位:百元,范围:)的频率分布直方图,同时得到他们月收入情况以及对该项政策赞成的人数统计表:

(1)求月收入在内的频率,并补全这个频率分布直方图,并在图中标出相应纵坐标;

(2)根据频率分布直方图估计这人的平均月收入;

(3)若从月收入(单位:百元)在的被调查者中随机选取人,求人都不赞成的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,有一块矩形空地ABCD,AB=2km,BC=4km,根据周边环境及地形实际,当地政府规划在该空地内建一个筝形商业区AEFG,筝形的顶点A,E,F,G为商业区的四个入口,其中入口F在边BC上(不包含顶点),入口E,G分别在边AB,AD上,且满足点A,F恰好关于直线EG对称,矩形内筝形外的区域均为绿化区.

(1)请确定入口F的选址范围;
(2)设商业区的面积为S1 , 绿化区的面积为S2 , 商业区的环境舒适度指数为 ,则入口F如何选址可使得该商业区的环境舒适度指数最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知椭圆的左右顶点为,右焦点为,一条准线方程是,点为椭圆上异于的两点,点的中点

(1)求椭圆的标准方程;

(2)直线交直线于点,记直线的斜率为,直线的斜率为,求证:为定值;

(3)若,求直线斜率的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列命题:

存在每个面都是直角三角形的四面体;

若三棱锥的三条侧棱两两垂直,则其三个侧面也两两垂直;

棱台的侧棱延长后交于一点;

用一个平面去截棱锥,棱锥底面和截面之间的部分是棱台;

其中正确命题的个数是  

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国古代数学著作《九章算术》有如下问题:“今有人持金出五关,前关二而税一,次关三而税一,次关四而税一,次关五而税一,次关六而税一,并五关所税,适重一斤,问本持金几何”其意思为“今有人持金出五关,第1关收税金 ,第2关收税金为剩余金的 ,第3关收税金为剩余金的 ,第4关收税金为剩余金的 ,第5关收税金为剩余金的 ,5关所收税金之和,恰好重1斤,问原来持金多少?”若将题中“5关所收税金之和,恰好重1斤,问原来持金多少?”改成假设这个原来持金为x,按此规律通过第8关,则第8关需收税金为x.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点A(0,-2),椭圆E (a>b>0)的离心率为F是椭圆E的右焦点,直线AF的斜率为O为坐标原点.

(1)E的方程;

(2)设过点A的动直线lE相交于PQ两点.OPQ的面积最大时,求l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在几何体A1B1D1﹣ABCD中,四边形A1B1BA与A1D1DA均为直角梯形,且AA1⊥底面ABCD,四边形ABCD为正方形,AB=2A1D1=2A1B1=4,AA1=4,P为DD1的中点.
(Ⅰ)求证:AB1⊥PC;
(Ⅱ)求几何体A1B1D1﹣ABCD的表面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在几何体ABCDEF中,四边形ABCD是菱形,BE⊥平面ABCD,DF∥BE,且DF=2BE=2,EF=3.
(1)证明:平面ACF⊥平面BEFD
(2)若二面角A﹣EF﹣C是二面角,求直线AE与平面ABCD所成角的正切值.

查看答案和解析>>

同步练习册答案