【题目】已知函数().
(Ⅰ)试判断函数的零点个数;
(Ⅱ)若函数在上为增函数,求整数的最大值.
(可能要用的数据: , , ).
【答案】(1)见解析(2)6
【解析】试题分析: (1)对函数求导,由在恒成立,则在上为增函数,由, 可判断出函数有唯一零点; (2)对函数求导,分离参变量, 在上恒成立,构造新函数求导,由(1)可知,a小于等于在区间上的最小值,根据函数的单调性,求得函数最小值的取值范围,即可取得整数a的最大值.
试题解析:解:(Ⅰ) 在上为增函数,
且,故在上为增函数,
又, ,
则函数在上有唯一零点.
(Ⅱ)在上恒成立,
当时显然成立,
当时,可得在上恒成立,
令,则, ,
,
由(Ⅰ)可知: 在上为增函数,故在上有唯一零点,
则在区间上为减函数,
在区间上为增函数,
故时, 有最小值, .
又,
,
则,
有,
所以, ,
令,则最小值
,
因,则的最小值大约在之间,
故整数的最大值为6.
科目:高中数学 来源: 题型:
【题目】已知点,点是椭圆:上任意一点,线段的垂直平分线交于点,点的轨迹记为曲线.
(Ⅰ)求曲线的方程;
(Ⅱ)过的直线交曲线于不同的,两点,交轴于点,已知,,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,曲线在点处的切线与直线垂直(其中为自然对数的底数).
(I)求的解析式及单调递减区间;
(II)若存在 ,使函数成立,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆: ()的左焦点为,左准线方程为.
(1)求椭圆的标准方程;
(2)已知直线交椭圆于, 两点.
①若直线经过椭圆的左焦点,交轴于点,且满足, .求证: 为定值;
②若(为原点),求面积的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知 =(sinx,sin(x﹣ )), =(sinx,cos(x+ )),f(x)= .
(1)求f(x)的解析式及周期;
(2)求f(x)在x∈[﹣ , ]上的值域.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】判断下列命题是全称命题还是存在性命题,并判断其真假:
(1)对任意x∈R,zx>0(z>0);
(2)对任意非零实数x1,x2,若x1<x2,则;
(3)α∈R,使得sin(α+)=sin α;
(4)x∈R,使得x2+1=0.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P﹣ABCD中,AD∥BC,AB⊥AD,AB⊥PA,BC=2AB=2AD=4BE,平面PAB⊥平面ABCD,
(Ⅰ)求证:平面PED⊥平面PAC;
(Ⅱ)若直线PE与平面PAC所成的角的正弦值为 ,求二面角A﹣PC﹣D的平面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知f(x)=|ax+1|(a∈R),不等式f(x)≤3的解集为{x|﹣2≤x≤1}. (Ⅰ)求a的值;
(Ⅱ)若f(x)﹣2f( )≤k恒成立,求k的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知,直线: ,椭圆: , 、分别为椭圆的左、右焦点.
(1)当直线过右焦点时,求直线的方程;
(2)设直线与椭圆交于, 两点, , 的重心分别为, ,若原点在以线段为直径的圆内,求实数的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com