已知各项均为正数的数列{a}满足a=2a+aa,且a+a=2a+4,其中n∈N.
(Ⅰ)若b=,求数列{b}的通项公式;
(Ⅱ)证明:++…+>(n≥2).
(1)b=(n∈N)
(2)构造函数借助于函数的最值来证明不等式。
解析试题分析:解:(Ⅰ)因为a=2a+aa,即(a+a)(2a-a)=0. 1分
又a>0,所以有2a-a=0,即2a=a
所以数列是公比为2的等比数列, 3分
由得,解得。
从而,数列{a}的通项公式为a=2(n∈N),即:b=(n∈N). 5分
(Ⅱ)构造函数f(x)=-(b-x)(x>0),
则f′(x)=-+=,
当0<x<b时,f′(x)>0,x>b时,f′(x)<0,
所以f(x)的最大值是f(b)=,所以f(x)≤. 7分
即≥-(b-x)(x>0,i=1,2,3…n),取“=”的条件是x=b(i=1,2,3…n),
所以++…+>-(b+b+…+b-nx), 9分
令x=,则++…+>,
所以++…+>, 11分
即++…+>(n≥2). 12分
考点:数列与导数、不等式
点评:解决的关键是能利用等比数列来求解通项公式,同时能结合导数来拍脑袋函数单调性,以及求解函数的最值,同时证明不等式,属于中档题。
科目:高中数学 来源: 题型:解答题
(文科只做(1)(2)问,理科全做)
设是函数图象上任意两点,且,已知点的横坐标为,且有,其中且n≥2,
(1) 求点的纵坐标值;
(2) 求,,及;
(3)已知,其中,且为数列的前n项和,若对一切都成立,试求λ的最小正整数值。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知数列的前项和为,满足,且依次是等比数列的前两项。
(1)求数列及的通项公式;
(2)是否存在常数且,使得数列是常数列?若存在,求出的值;若不存在,说明理由。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分14分)已知f (x)=mx(m为常数,m>0且m≠1).设f (a1),f (a2),…,f (an),…(n∈N)是首项为m2,公比为m的等比数列.
(1)求证:数列{an}是等差数列;
(2)若bn=an f (an),且数列{bn}的前n项和为Sn,当m=3时,求Sn;
(3)若cn= f(an) lg f (an),问是否存在m,使得数列{cn}中每一项恒不小于它后面的项?若存在,求出m的取值范围;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com