精英家教网 > 高中数学 > 题目详情

【题目】某企业拟用10万元投资甲、乙两种商品.已知各投入万元,甲、乙两种商品分别可获得万元的利润,利润曲线,如图所示.

(1)求函数的解析式;

(2)应怎样分配投资资金,才能使投资获得的利润最大?

【答案】(1);(2)当投资甲商品6.25万元,乙商品3.75万元时,所获得的利润最大值为万元.

【解析】

试题(1)由图可知,点在曲线上,将两点的坐标代入曲线的方程,列方程组可求得.同理在曲线上,将其代入曲线的方程可求得.(2)设投资甲商品万元,乙商品万元,则利润表达式为,利用换元法和配方法,可求得当投资甲商品万元,乙商品万元时,所获得的利润最大值为万元.

试题解析:

(1)由题知在曲线上,

解得,即.

在曲线上,且,则

,所以.

(2)设甲投资万元,则乙投资为万元,

投资获得的利润为万元,则

.

,即(万元)时,利润最大为万元,此时(万元),

答:当投资甲商品6.25万元,乙商品3.75万元时,所获得的利润最大值为万元.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某公司拟设计一个扇环形状的花坛(如图所示),该扇环是由以点为圆心的两个同心圆弧和延长后通过点,的两条线段围成.设圆弧和圆弧所在圆的半径分别为米,圆心角为θ(弧度).

(1)若,,求花坛的面积;

(2)设计时需要考虑花坛边缘(实线部分)的装饰问题,已知直线部分的装饰费用为60/米,弧线部分的装饰费用为90/米,预算费用总计1200元,问线段AD的长度为多少时,花坛的面积最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】近年来空气质量逐步恶化,雾霾天气现象增多,大气污染危害加重.大气污染可引起心悸、呼吸困难等心肺疾病.为了解心肺疾病是否与性别有关,在市第一人民医院随机对入院50人进行了问卷调查,得到了如表的列联表:

患心肺疾病

不患心肺疾病

合计

5

10

合计

50

已知在全部50人中随机抽取1人,抽到患心肺疾病的人的概率为.

参考格式:,其中 .

下面的临界值仅供参考:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(1)请将上面的列联表补充完整;

(2)是否有99%的把握认为患心肺疾病与性别有关?说明你的理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,对于任意的 ,都有, 当时,,且.

( I ) 求的值;

(II) 当时,求函数的最大值和最小值;

(III) 设函数,判断函数g(x)最多有几个零点,并求出此时实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线,且三点中恰有两点在抛物线上,另一点是抛物线的焦点.

(1)求证:三点共线;

(2)若直线过抛物线的焦点且与抛物线交于两点,点轴的距离为,点轴的距离为,求的最小值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】首届世界低碳经济大会在南昌召开,本届大会以“节能减排,绿色生态”为主题,某单位在国家科研部门的支持下,进行技术攻关,采用了新工艺,把二氧化碳转化为一种可利用的化工产品.已知该单位每月的处理量最少为400吨,最多为600吨,月处理成本()与月处理量()之间的函数关系可近似地表示为,且每处理一吨二氧化碳得到可利用的化工产品价值为100元.

1)该单位每月处理量为多少吨时,才能使每吨的平均处理成本最低?

2)该单位每月能否获利?如果获利,求出最大利润;如果不获利,则需要国家至少补贴多少元才能使该单位不亏损?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 ,

有零点 m 的取值范围;

确定 m 的取值范围使得有两个相异实根.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将一个内角为且边长为的菱形沿着较短的对角线折成一个二面角为的空间四边形,则此空间四边形的外接球的半径为

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,底面是直角梯形,,侧面是等腰直角三角形,,平面平面,点分别是棱上的点,平面平面.

(1)确定点的位置,并说明理由;

(2)求二面角的余弦值.

查看答案和解析>>

同步练习册答案