精英家教网 > 高中数学 > 题目详情
11.已知数列{an}前n项和为${S_n}={n^2}-2n+a$,若该数列是等差数列,则a=(  )
A.-1B.0C.1D.不确定

分析 Sn=n2-2n+a,可得a1=a-1,a2=1,a3=3,由于该数列是等差数列,即可得出a.

解答 解:∵Sn=n2-2n+a,
∴a1=a-1,a1+a2=a,a1+a2+a3=3+a,
解得:a1=a-1,a2=1,a3=3,
∵该数列是等差数列,
∴2×1=3+a-1,解得a=0.
故选:B.

点评 本题考查了等差数列的通项公式及其性质、递推关系,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.已知直线y=k(x-1)+1与圆C:x2-4x+y2+1=0交于A,B两点,则|AB|的最小值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设a>b,c>d则下列不等式中一定成立的是(  )
A.a+c>b+dB.ac>bdC.a-c>b-dD.a+d>b+c

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知抛物线y2=2px(p>0)的焦点为F,P、Q是抛物线上的两点,若△FPQ是边长为2的正三角形,则p的值是(  )
A.$2±\sqrt{3}$B.$2+\sqrt{3}$C.$\sqrt{3}±1$D.$\sqrt{3}-1$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=|x-1|-|x+2|.
(Ⅰ)求不等式-2<f(x)<0的解集A;
(Ⅱ)若m,n∈A,证明:|1-4mn|>2|m-n|.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.设数列{an}的前n项和为Sn,a1=$\frac{1}{3}$,且对任意m,n∈N*,am+n=am•an,若Sn<a恒成立,则a的最小值为$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.某单位有500位职工,其中35岁以下的有125人,35~49岁的有280人,50岁以上的有95人,为了了解职工的健康状态,采用分层抽样的方法抽取一个容量为100的样本,需抽取50岁以上职工人数为19.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.现要完成下列3项抽样调查:
①从10盒酸奶中抽取3盒进行食品卫生检查.
②科技报告厅有32排,每排有40个座位,有一次报告会恰好坐满了听众,报告会结束后,为了听取意见,
需要请32名听众进行座谈.
③高新中学共有160名教职工,其中一般教师120名,行政人员16名,后勤人员24名,为了了解教职工对学校在
校务公开方面的意见,拟抽取一个容量为20的样本.
较为合理的抽样方法是(  )
A.①简单随机抽样,②系统抽样,③分层抽样
B.①简单随机抽样,②分层抽样,③系统抽样
C.①系统抽样,②简单随机抽样,③分层抽样
D.①分层抽样,②系统抽样,③简单随机抽样

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.在区间[-4,4]上随机地取一个数a,则事件“对任意的正实数x,使x2-ax+1≥0成立”发生的概率为(  )
A.$\frac{3}{4}$B.$\frac{1}{2}$C.$\frac{1}{3}$D.$\frac{1}{4}$

查看答案和解析>>

同步练习册答案