分析 如图,取BC得中点E,根据勾股定理求出AE,再求出S△ABC,再根据S△BDC=$\frac{1}{2}$S△ABC即可求出,根据等腰三角形的性质和二倍角公式即可求出
解答
解:如图,取BC得中点E,
∵AB=AC=4,BC=2,
∴BE=$\frac{1}{2}$BC=1,AE⊥BC,
∴AE=$\sqrt{A{B}^{2}-B{E}^{2}}$=$\sqrt{15}$,
∴S△ABC=$\frac{1}{2}$BC•AE=$\frac{1}{2}$×2×$\sqrt{15}$=$\sqrt{15}$,
∵BD=2,
∴S△BDC=$\frac{1}{2}$S△ABC=$\frac{\sqrt{15}}{2}$,
∵BC=BD=2,
∴∠BDC=∠BCD,
∴∠ABE=2∠BDC
在Rt△ABE中,
∵cos∠ABE=$\frac{BE}{AB}$=$\frac{1}{4}$,
∴cos∠ABE=2cos2∠BDC-1=$\frac{1}{4}$,
∴cos∠BDC=$\frac{\sqrt{10}}{4}$,
故答案为:$\frac{\sqrt{15}}{2}$,$\frac{\sqrt{10}}{4}$
点评 本题考查了解三角形的有关知识,关键是转化,属于基础题
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [0,6] | B. | [0,4] | C. | [6,+∞) | D. | [4,+∞) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com