精英家教网 > 高中数学 > 题目详情
15.下列各式的运算结果为纯虚数的是(  )
A.i(1+i)2B.i2(1-i)C.(1+i)2D.i(1+i)

分析 利用复数的运算法则、纯虚数的定义即可判断出结论.

解答 解:A.i(1+i)2=i•2i=-2,是实数.
B.i2(1-i)=-1+i,不是纯虚数.
C.(1+i)2=2i为纯虚数.
D.i(1+i)=i-1不是纯虚数.
故选:C.

点评 本题考查了复数的运算法则、纯虚数的定义,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.已知数列{an}的前n项和为Sn,且满足Sn=2an-2;数列{bn}的前n项和为Tn,且满足b1=1,b2=2,$\frac{T_n}{{{T_{n+1}}}}=\frac{b_n}{{{b_{n+2}}}}$.
(1)求数列{an}、{bn}的通项公式;
(2)是否存在正整数n,使得$\frac{{{a_n}+{b_n}+1}}{{{a_n}-{b_{n+1}}}}$恰为数列{bn}中的一项?若存在,求所有满足要求的bn;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=x2-(a+2)x+alnx,其中常数a>0.
(1)当a=2时,判断函数f(x)的单调性;
(2)当a=4时,给出两组直线:6x+y+m=0与3x-y+n=0,其中m,n为常数,判断这两类直线中是否存在y=f(x)的切线,若存在,求出该切线方程.
(3)设定义在D上的函数y=h(x)在点P(x0,h(x0))处的切线方程为l:y=g(x),若$\frac{h(x)-g(x)}{{x-{x_0}}}>0$在D内恒成立,则称P为函数y=h(x)的“类对称点”,当a=4时,试问y=f(x)是否存在“类对称点”,若存在,请至少求出一个“类对称点”的横坐标,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=$\frac{1}{3}$x3-$\frac{1}{2}$ax2,a∈R,
(1)当a=2时,求曲线y=f(x)在点(3,f(3))处的切线方程;
(2)设函数g(x)=f(x)+(x-a)cosx-sinx,讨论g(x)的单调性并判断有无极值,有极值时求出极值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知△ABC,AB=AC=4,BC=2,点D为AB延长线上一点,BD=2,连结CD,则△BDC的面积是$\frac{\sqrt{15}}{2}$,cos∠BDC=$\frac{\sqrt{10}}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.曲线y=x2+$\frac{1}{x}$在点(1,2)处的切线方程为x-y+1=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设x,y满足约束条件$\left\{\begin{array}{l}{2x+3y-3≤0}\\{2x-3y+3≥0}\\{y+3≥0}\end{array}\right.$,则z=2x+y的最小值是(  )
A.-15B.-9C.1D.9

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知函数f(x)=3x-($\frac{1}{3}$)x,则f(x)(  )
A.是偶函数,且在R上是增函数B.是奇函数,且在R上是增函数
C.是偶函数,且在R上是减函数D.是奇函数,且在R上是减函数

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知半径为120mm的圆上,有一条弧的长是144mm,则该弧所对的圆心角的弧度数为1.2.

查看答案和解析>>

同步练习册答案