精英家教网 > 高中数学 > 题目详情
7.设x,y满足约束条件$\left\{\begin{array}{l}{2x+3y-3≤0}\\{2x-3y+3≥0}\\{y+3≥0}\end{array}\right.$,则z=2x+y的最小值是(  )
A.-15B.-9C.1D.9

分析 画出约束条件的可行域,利用目标函数的最优解求解目标函数的最小值即可.

解答 解:x、y满足约束条件$\left\{\begin{array}{l}{2x+3y-3≤0}\\{2x-3y+3≥0}\\{y+3≥0}\end{array}\right.$的可行域如图:
z=2x+y 经过可行域的A时,目标函数取得最小值,
由$\left\{\begin{array}{l}{y=-3}\\{2x-3y+3=0}\end{array}\right.$解得A(-6,-3),
则z=2x+y 的最小值是:-15.
故选:A.

点评 本题考查线性规划的简单应用,考查数形结合以及计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.某网络营销部门为了统计某市网友“双11”在某淘宝店的网购情况,随机抽查了该市当天60名网友的网购金额情况,得到如下数据统计表(如图):
网购金额
(单位千元)
频数频率
(0,0.5]30.05
(0.5,1]xp
(1,1.5]90.15
(1.5,2]150.25
(2,2.5]180.30
(2.5,3]yq
合计601.00
若网购金额超过2千元的顾客定义为“网购达人”,网购金额不超过2千元的顾客定义为“非网购达人”,已知“非网购达人”与“网购达人”人数比恰好为3:2.
(1)试确定x,y,p,q的值,并补全频率分布直方图;
(2)试营销部门为了进一步了解这60名网友的购物体验,从“非网购达人”、“网购达人”中用分层抽样的方法确定5人,若需从这5人中随机选取2人进行问卷调查,则恰好选取1名“网购达人”和1名“非网购达人”的概率是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知f(x)是定义在R上的偶函数,且f(x+4)=f(x-2).若当x∈[-3,0]时,f(x)=6-x,则f(919)=6.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.下列各式的运算结果为纯虚数的是(  )
A.i(1+i)2B.i2(1-i)C.(1+i)2D.i(1+i)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.等差数列{an}的首项为1,公差不为0.若a2,a3,a6成等比数列,则{an}前6项的和为(  )
A.-24B.-3C.3D.8

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知集合A={1,2},B={a,a2+3}.若A∩B={1},则实数a的值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设x、y、z为正数,且2x=3y=5z,则(  )
A.2x<3y<5zB.5z<2x<3yC.3y<5z<2xD.3y<2x<5z

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设数列{an}满足a1+3a2+…+(2n-1)an=2n.
(1)求{an}的通项公式;
(2)求数列{$\frac{{a}_{n}}{2n+1}$}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设f(x)=$\left\{\begin{array}{l}{\sqrt{x},0<x<1}\\{2(x-1),x≥1}\end{array}\right.$若f(a)=f(a+1),则f($\frac{1}{a}$)=(  )
A.2B.4C.6D.8

查看答案和解析>>

同步练习册答案