分析 (1)利用数列递推关系即可得出.
(2)$\frac{{a}_{n}}{2n+1}$=$\frac{2}{(2n-1)(2n+1)}$=$\frac{1}{2n-1}$-$\frac{1}{2n+1}$.利用裂项求和方法即可得出.
解答 解:(1)数列{an}满足a1+3a2+…+(2n-1)an=2n.
n≥2时,a1+3a2+…+(2n-3)an-1=2(n-1).
∴(2n-1)an=2.∴an=$\frac{2}{2n-1}$.
当n=1时,a1=2,上式也成立.
∴an=$\frac{2}{2n-1}$.
(2)$\frac{{a}_{n}}{2n+1}$=$\frac{2}{(2n-1)(2n+1)}$=$\frac{1}{2n-1}$-$\frac{1}{2n+1}$.
∴数列{$\frac{{a}_{n}}{2n+1}$}的前n项和=$(1-\frac{1}{3})$+$(\frac{1}{3}-\frac{1}{5})$+…+$(\frac{1}{2n-1}-\frac{1}{2n+1})$=1-$\frac{1}{2n+1}$=$\frac{2n}{2n+1}$.
点评 本题考查了数列递推关系、裂项求和方法,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -15 | B. | -9 | C. | 1 | D. | 9 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 是偶函数,且在R上是增函数 | B. | 是奇函数,且在R上是增函数 | ||
| C. | 是偶函数,且在R上是减函数 | D. | 是奇函数,且在R上是减函数 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{3}$ | B. | $\sqrt{2}$ | C. | 2 | D. | 3 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com