精英家教网 > 高中数学 > 题目详情
已知函数f(x)=xex(x∈R).
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)若f′(x)≥3kx-k对一切x∈[-1,+∞)恒成立,求正实数k的取值范围.
分析:(I)利用导数与函数单调性的关系即可得出;
(II)原不等式等价于(1+x)ex≥k(3x-1),对x分类讨论,再利用导数研究其单调性极值与最值即可得出.
解答:解:(Ⅰ)f′(x)=(1+x)ex
当x∈(-∞,-1)时,f′(x)<0;
当x∈(-1,+∞)时,f′(x)>0,
∴f(x)的单调递增区间为(-1,+∞),单调递减区间为(-∞,-1).
(Ⅱ)由已知条件可知,原不等式等价于(1+x)ex≥k(3x-1),
-1≤x≤
1
3
时,
∵k>0,∴k(3x-1)≤0,
而(1+x)ex≥0,此时不等式显然成立;
x>
1
3
时,k≤
(1+x)ex
3x-1

设g(x)=
(1+x)ex
3x-1
(x>
1
3
)
g(x)=
(3x2+2x-5)ex
(3x-1)2

令g′(x)=0得x=-
5
x
或x=1,
x∈(
1
3
,1)
时,g′(x)<0,g(x)单调递减,
当x∈(1,+∞)时,g′(x)>0,g(x)单调递增,
故当x=1时,g(x)有最小值e,
即得0<k<e.
点评:本题考查了利用导研究函数的单调性极值与最值、分类讨论、恒成立问题的等价转化等基础知识与基本技能方法,属于难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分图象如图所示,则f(x)的解析式是(  )
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•深圳一模)已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海模拟)已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:上海模拟 题型:解答题

已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:深圳一模 题型:解答题

已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

同步练习册答案