精英家教网 > 高中数学 > 题目详情
3.10名学生干部(名单见表2)进行内部评优,每人根据评分标准为自己和其他人打分,分值取0到10的整数.对某名干部的得分xi(i=1,2,…,10)计算均值$\overline x$和标准差s,计区间$(\overline x-2s,\overline x+2s)$内的得分我“有效得分”,则这名干部的最终得分为其有效得分的平均分,最终得分最高的前4名干部评为优秀干部.
(1)表1为贝航的原始得分,请据此计算表2中a的值(保留两位小数),并判断贝航是否被评为了优秀干部;
(2)现从这十名干部中随机抽取3人前往香港大学进行为期两天的交流访问,设所选取的3人中女生人数为X,优秀干部人数为Y,求概率P(X≥1且Y≥1).
表1
姓名x1x2x3x4x5x6x7x8x9x10
贝航99108996997
表2
姓名贝航黄韦嘉李萱刘紫璇罗迪威王安国肖悦杨清源袁佳仪周紫薇
性别
最终得分a9.228.508.818.438.918.127.959.317.79
参考数据:$\sqrt{5}≈2.24$.

分析 (1)计算得$\overline x=8.5,s=\frac{{\sqrt{5}}}{2}≈1.12$,则有效得分区间为(6.26.10.74),包含表1中除去x7的其余9个得分,计算其均值的最终得分a≈8.78,即可得出结论;
(2)事件X=0有$C_4^3=4$种基本事件,事件Y=0有$C_6^3=20$种基本事件,且两事件互斥,即可得出结论.

解答 解:(1)计算得$\overline x=8.5,s=\frac{{\sqrt{5}}}{2}≈1.12$,则有效得分区间为(6.26.10.74),包含表1中除去x7的其余9个得分,计算其均值的最终得分a≈8.78.由表2知,贝航最终得分排名第5,没有被评为优秀干部.
(2)事件X=0有$C_4^3=4$种基本事件,事件Y=0有$C_6^3=20$种基本事件,且两事件互斥.
∴P(X≥1且Y≥1)=1-P(X=0或Y=0)=1-P(X=0)-P(Y=0)=$1-\frac{C_4^3}{{C_{10}^3}}-\frac{C_6^3}{{C_{10}^3}}=\frac{4}{5}$…(12分)

点评 本题考查概率的计算,考查学生对数据的运用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.已知公差不为0的等差数列{an}的首项a1为a(a∈R),且a1,a2,a4成等比数列.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)对n∈N*,试比较$\frac{1}{a_2}+\frac{1}{{a_{2^2}^{\;}}}+\frac{1}{{a_{2^3}^{\;}}}+…+\frac{1}{{a_{2^n}^{\;}}}$与$\frac{1}{a_1}$的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.在△ABC中,已知($\overrightarrow{AB}$+$\overrightarrow{AC}$)•$\overrightarrow{BC}$=0,$\overrightarrow{OA}$2+$\overrightarrow{OB}$•$\overrightarrow{OC}$=$\overrightarrow{OA}$•$\overrightarrow{OB}$+$\overrightarrow{OA}$•$\overrightarrow{OC}$(O为平面内任意一点),则△ABC的形状为(  )
A.等腰三角形B.等边三角形C.直角三角形D.等腰直角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若圆锥的侧面展开图圆心角为120°,则圆锥的底面半径和母线之比为$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.下列四个命题:
(1)给定两个命题p,q.若p是q的充分不必要条件,则¬p是¬q的必要不充分条件
(2)“(2x-1)x=0”的充分不必要条件是“x=0”.
(3)在△ABC中,“A=60°”是“cos A=$\frac{1}{2}$”的充分不必要条件.
(4)已知函数f(x)=Acos(ωx+φ)(A>0,ω>0,x∈R),则“f(x)是奇函数”是“φ=$\frac{π}{2}$”的充分必要条件. 
 其中正确命题的序号是(1)(2).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设f(θ)=$\frac{2co{s}^{2}θ+si{n}^{2}(2π-θ)+sin(\frac{π}{2}+θ)-3}{2+2co{s}^{2}(π+θ)+cos(-θ)}$,则f($\frac{π}{3}$)的值为(  )
A.-$\frac{5}{12}$B.$\frac{1}{2}$C.1D.$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=sin(ωx+φ)-b(ω>0,0<φ<π)的图象两相邻对称轴之间的距离是$\frac{π}{2}$,若将f(x)的图象先向右平移$\frac{π}{6}$个单位,再向上平移$\sqrt{3}$个单位,所得函数g(x)为奇函数.
(1)求f(x)的解析式;       
(2)求f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设全集U=R,集合A={x|x≤3},B={x|x≤6},则集合(∁UA)∩B=(  )
A.{x|3≤x<6}B.{x|3<x<6}C.{x|3<x≤6}D.{x|3≤x≤6}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知数列{an}满足a1=1,anan+1=2n(n∈N*),则a9+a10的值为(  )
A.34B.22C.48D.64

查看答案和解析>>

同步练习册答案