精英家教网 > 高中数学 > 题目详情
11.若圆锥的侧面展开图圆心角为120°,则圆锥的底面半径和母线之比为$\frac{1}{3}$.

分析 利用弧长公式,即可得出结论.

解答 解:圆锥的侧面展开图圆心角为120°=$\frac{2π}{3}$,
∴2πr=$\frac{2π}{3}l$,
∴$\frac{r}{l}$=$\frac{1}{3}$.
故答案为$\frac{1}{3}$.

点评 本题考查弧长公式,考查学生的计算能力,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.在?ABCD中,$\overrightarrow{AD}$=(3,7),$\overrightarrow{AB}$=(-2,3),对角线交点为O,则$\overrightarrow{CO}$等于(-$\frac{1}{2}$,-5).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.己知a=${∫}_{0}^{\frac{π}{2}}$($\frac{1}{2}$-sin2$\frac{x}{2}$)dx,则(ax+$\frac{1}{2ax}$)9展开式中,x的一次项系数为(  )
A.-$\frac{63}{16}$B.$\frac{63}{16}$C.-$\frac{63}{8}$D.$\frac{63}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.在△ABC中,$\overrightarrow{MB}$=$\frac{1}{4}$$\overrightarrow{AB}$,且对AB边上任意一点N,恒有$\overrightarrow{NB}$•$\overrightarrow{NC}$≥$\overrightarrow{MB}$•$\overrightarrow{MC}$,则有(  )
A.AB⊥BCB.AB⊥ACC.AB=ACD.AC=BC

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=4sinx•sin2($\frac{π}{4}$+$\frac{x}{2}$)+cos2x
(1)设w>0,且w为常数,若函数y=f(wx)在区间[-$\frac{π}{2}$,$\frac{2π}{3}$]上是增函数,求w的取值范围;
(2)设集合A={x|$\frac{π}{6}$≤x≤$\frac{2π}{3}$},B={x||f(x)-m|<2},若A∪B=B,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知向量$\overrightarrow a=(sin\frac{ωx}{2},-sin\frac{ωx}{2}),\overrightarrow b=(cos\frac{ωx}{2},sin\frac{ωx}{2})(ω>0)$,函数$f(x)=\overrightarrow a•\overrightarrow b$,x1,x2是函数f(x)的任意两个相异零点,且|x1-x2|的最小值为$\frac{π}{2}$.
(Ⅰ)求ω的值;
(Ⅱ)若函数g(x)=f(x)-m在$(0,\frac{π}{2})$上无零点,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.10名学生干部(名单见表2)进行内部评优,每人根据评分标准为自己和其他人打分,分值取0到10的整数.对某名干部的得分xi(i=1,2,…,10)计算均值$\overline x$和标准差s,计区间$(\overline x-2s,\overline x+2s)$内的得分我“有效得分”,则这名干部的最终得分为其有效得分的平均分,最终得分最高的前4名干部评为优秀干部.
(1)表1为贝航的原始得分,请据此计算表2中a的值(保留两位小数),并判断贝航是否被评为了优秀干部;
(2)现从这十名干部中随机抽取3人前往香港大学进行为期两天的交流访问,设所选取的3人中女生人数为X,优秀干部人数为Y,求概率P(X≥1且Y≥1).
表1
姓名x1x2x3x4x5x6x7x8x9x10
贝航99108996997
表2
姓名贝航黄韦嘉李萱刘紫璇罗迪威王安国肖悦杨清源袁佳仪周紫薇
性别
最终得分a9.228.508.818.438.918.127.959.317.79
参考数据:$\sqrt{5}≈2.24$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若函数$f(x)=\frac{{{a^x}+1}}{{{a^x}-b}}(0<a<1)$的图象关于原点对称,则函数g(x)=loga(x+b)的大致图象是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知某几何体的三视图如图所示,其体积为$\frac{20}{3}$.

查看答案和解析>>

同步练习册答案