分析 (1)利用倍角公式、诱导公式即可得出f(x)=2sinx+1.再利用三角函数的单调性即可得出.
(2)|f(x)-m|<2,可得:f(x)-2<m<f(x)+2.由A∪B=B,可得A⊆B,即当$\frac{π}{6}$≤x≤$\frac{2π}{3}$时,f(x)-2<m<f(x)+2恒成立,可得[f(x)-2]max<m<[f(x)+2]min.
解答 解:(1)函数$f(x)=4sinx•{sin^2}(\frac{π}{4}+\frac{x}{2})+cos2x$=4sinx$•\frac{1-cos(\frac{π}{2}+x)}{2}$+cos2x=2sinx(1+sinx)+cos2x=2sinx+1.
∵函数y=f(wx)=2sin2ωx+1在区间$[-\frac{π}{2},\frac{2π}{3}]$上是增函数,
∴$[-\frac{π}{2},\frac{2π}{3}]$⊆$[-\frac{π}{2ω},\frac{π}{2ω}]$,解得ω∈$(0,\frac{3}{4}]$.
(2)|f(x)-m|<2,可得:f(x)-2<m<f(x)+2.∵A∪B=B,∴A⊆B,即当$\frac{π}{6}$≤x≤$\frac{2π}{3}$时,f(x)-2<m<f(x)+2恒成立,∴[f(x)-2]max<m<[f(x)+2]min.
∵$f(x)_{min}=f(\frac{π}{6})$=2,f(x)max=$f(\frac{π}{2})$=3.
故m∈(1,4).
点评 本题考查了三角函数的图象与性质、集合的运算性质,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 若m?α,n?α,m∥n,则n∥α | B. | 若α⊥β,n?α,n⊥β,则n∥α | ||
| C. | 若α∥β,m?α,则m∥β | D. | 若α⊥β,α∩β=n,m⊥n,则m⊥β |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充要条件 | D. | 既不充分也不必要条件 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 等腰三角形 | B. | 等边三角形 | C. | 直角三角形 | D. | 等腰直角三角形 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com